L(s) = 1 | + (−0.718 + 1.24i)2-s + (0.967 + 1.67i)4-s + 3.30·5-s + (10.5 − 6.06i)7-s − 8.52·8-s + (−2.37 + 4.11i)10-s + (−7.35 + 12.7i)11-s + (3.48 + 12.5i)13-s + 17.4i·14-s + (2.25 − 3.90i)16-s + (19.9 − 11.4i)17-s + (−9.63 + 5.56i)19-s + (3.19 + 5.54i)20-s + (−10.5 − 18.3i)22-s + (3.03 + 1.75i)23-s + ⋯ |
L(s) = 1 | + (−0.359 + 0.622i)2-s + (0.241 + 0.419i)4-s + 0.661·5-s + (1.50 − 0.866i)7-s − 1.06·8-s + (−0.237 + 0.411i)10-s + (−0.668 + 1.15i)11-s + (0.268 + 0.963i)13-s + 1.24i·14-s + (0.141 − 0.244i)16-s + (1.17 − 0.676i)17-s + (−0.506 + 0.292i)19-s + (0.159 + 0.277i)20-s + (−0.480 − 0.831i)22-s + (0.131 + 0.0761i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.324 - 0.945i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.324 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.17713 + 0.840248i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17713 + 0.840248i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-3.48 - 12.5i)T \) |
good | 2 | \( 1 + (0.718 - 1.24i)T + (-2 - 3.46i)T^{2} \) |
| 5 | \( 1 - 3.30T + 25T^{2} \) |
| 7 | \( 1 + (-10.5 + 6.06i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (7.35 - 12.7i)T + (-60.5 - 104. i)T^{2} \) |
| 17 | \( 1 + (-19.9 + 11.4i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (9.63 - 5.56i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-3.03 - 1.75i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (10.8 + 6.23i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + 29.9iT - 961T^{2} \) |
| 37 | \( 1 + (22.5 + 13.0i)T + (684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (-37.9 + 65.8i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-4.34 - 7.53i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 - 31.3T + 2.20e3T^{2} \) |
| 53 | \( 1 - 52.3iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (20.6 + 35.6i)T + (-1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-25.1 - 43.5i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (102. + 59.3i)T + (2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + (16.8 + 29.1i)T + (-2.52e3 + 4.36e3i)T^{2} \) |
| 73 | \( 1 - 5.21iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 39.7T + 6.24e3T^{2} \) |
| 83 | \( 1 + 141.T + 6.88e3T^{2} \) |
| 89 | \( 1 + (-11.9 + 20.7i)T + (-3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-43.0 + 24.8i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.75145580640151293661189416901, −12.39882946742280462640385673609, −11.42547602190245696011863112783, −10.26429865561453145507132254915, −9.088072462717220562211924655302, −7.73198848019027849280887473022, −7.29031724666143410762043729178, −5.69109280506249585804412492478, −4.25889349466369117048039222329, −2.01410289120608439050958902970,
1.43868524602874116009912958435, 2.85959878445791617715869984083, 5.36687373681717188278096749195, 5.91036910376092960852970102362, 8.035493524072535014172082745962, 8.813709678232729190204876469786, 10.20813169162465585369224981793, 10.90942593561793081400085306334, 11.77454437543789409960041862591, 12.93362456762354824144165408348