L(s) = 1 | + (0.658 + 0.379i)2-s + (1.82 + 2.38i)3-s + (−1.71 − 2.96i)4-s + (7.70 − 4.45i)5-s + (0.294 + 2.26i)6-s + (−0.0636 + 0.110i)7-s − 5.64i·8-s + (−2.34 + 8.68i)9-s + 6.76·10-s + (−4.42 − 2.55i)11-s + (3.94 − 9.48i)12-s + (1.80 + 3.12i)13-s + (−0.0837 + 0.0483i)14-s + (24.6 + 10.2i)15-s + (−4.70 + 8.14i)16-s + 23.2i·17-s + ⋯ |
L(s) = 1 | + (0.329 + 0.189i)2-s + (0.607 + 0.794i)3-s + (−0.427 − 0.740i)4-s + (1.54 − 0.890i)5-s + (0.0491 + 0.376i)6-s + (−0.00909 + 0.0157i)7-s − 0.705i·8-s + (−0.261 + 0.965i)9-s + 0.676·10-s + (−0.402 − 0.232i)11-s + (0.328 − 0.790i)12-s + (0.138 + 0.240i)13-s + (−0.00598 + 0.00345i)14-s + (1.64 + 0.683i)15-s + (−0.293 + 0.508i)16-s + 1.36i·17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.996−0.0848i)Λ(3−s)
Λ(s)=(=(117s/2ΓC(s+1)L(s)(0.996−0.0848i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.996−0.0848i
|
Analytic conductor: |
3.18801 |
Root analytic conductor: |
1.78550 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(92,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1), 0.996−0.0848i)
|
Particular Values
L(23) |
≈ |
2.07783+0.0882852i |
L(21) |
≈ |
2.07783+0.0882852i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.82−2.38i)T |
| 13 | 1+(−1.80−3.12i)T |
good | 2 | 1+(−0.658−0.379i)T+(2+3.46i)T2 |
| 5 | 1+(−7.70+4.45i)T+(12.5−21.6i)T2 |
| 7 | 1+(0.0636−0.110i)T+(−24.5−42.4i)T2 |
| 11 | 1+(4.42+2.55i)T+(60.5+104.i)T2 |
| 17 | 1−23.2iT−289T2 |
| 19 | 1−9.50T+361T2 |
| 23 | 1+(22.0−12.7i)T+(264.5−458.i)T2 |
| 29 | 1+(20.0+11.5i)T+(420.5+728.i)T2 |
| 31 | 1+(15.4+26.8i)T+(−480.5+832.i)T2 |
| 37 | 1−7.35T+1.36e3T2 |
| 41 | 1+(−32.4+18.7i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(8.05−13.9i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(66.9+38.6i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1−49.0iT−2.80e3T2 |
| 59 | 1+(40.3−23.3i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(−57.3+99.3i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−66.4−115.i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1+72.0iT−5.04e3T2 |
| 73 | 1−18.8T+5.32e3T2 |
| 79 | 1+(0.111−0.193i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−50.8−29.3i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1−100.iT−7.92e3T2 |
| 97 | 1+(−4.44+7.69i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.53133237637794225438307547172, −12.82795874499634628804751470104, −10.82688769066998586372393699730, −9.809004070722368301296865940357, −9.372297521455157161238248073259, −8.241865770152329023661088847810, −5.99754096297738404441083600434, −5.36357211210748377459527720640, −4.09552885431623171307839907861, −1.85799524516376930070861282219,
2.23854030147246654969040221107, 3.22233761427317094423817511078, 5.34070827353504039604506403099, 6.70679211777142930532791318104, 7.72066637654356085899349741018, 9.057898875487896390199161685354, 9.942828283384208090393479181858, 11.39479559524943314738933105058, 12.62736198962073009417626886881, 13.37598291331939246532023474547