L(s) = 1 | + (1.10 + 0.635i)2-s + (−2.90 + 0.746i)3-s + (−1.19 − 2.06i)4-s + (4.29 − 2.47i)5-s + (−3.67 − 1.02i)6-s + (2.07 − 3.59i)7-s − 8.11i·8-s + (7.88 − 4.34i)9-s + 6.30·10-s + (6.91 + 3.99i)11-s + (5.00 + 5.10i)12-s + (−1.80 − 3.12i)13-s + (4.57 − 2.64i)14-s + (−10.6 + 10.4i)15-s + (0.388 − 0.673i)16-s − 19.5i·17-s + ⋯ |
L(s) = 1 | + (0.550 + 0.317i)2-s + (−0.968 + 0.248i)3-s + (−0.298 − 0.516i)4-s + (0.858 − 0.495i)5-s + (−0.612 − 0.170i)6-s + (0.296 − 0.514i)7-s − 1.01i·8-s + (0.876 − 0.482i)9-s + 0.630·10-s + (0.628 + 0.362i)11-s + (0.417 + 0.425i)12-s + (−0.138 − 0.240i)13-s + (0.326 − 0.188i)14-s + (−0.708 + 0.693i)15-s + (0.0242 − 0.0420i)16-s − 1.14i·17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.752+0.658i)Λ(3−s)
Λ(s)=(=(117s/2ΓC(s+1)L(s)(0.752+0.658i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.752+0.658i
|
Analytic conductor: |
3.18801 |
Root analytic conductor: |
1.78550 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(92,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1), 0.752+0.658i)
|
Particular Values
L(23) |
≈ |
1.34735−0.505962i |
L(21) |
≈ |
1.34735−0.505962i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(2.90−0.746i)T |
| 13 | 1+(1.80+3.12i)T |
good | 2 | 1+(−1.10−0.635i)T+(2+3.46i)T2 |
| 5 | 1+(−4.29+2.47i)T+(12.5−21.6i)T2 |
| 7 | 1+(−2.07+3.59i)T+(−24.5−42.4i)T2 |
| 11 | 1+(−6.91−3.99i)T+(60.5+104.i)T2 |
| 17 | 1+19.5iT−289T2 |
| 19 | 1−5.83T+361T2 |
| 23 | 1+(8.95−5.17i)T+(264.5−458.i)T2 |
| 29 | 1+(30.4+17.5i)T+(420.5+728.i)T2 |
| 31 | 1+(−19.2−33.3i)T+(−480.5+832.i)T2 |
| 37 | 1−58.1T+1.36e3T2 |
| 41 | 1+(11.9−6.92i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(8.84−15.3i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(−67.0−38.7i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1+58.8iT−2.80e3T2 |
| 59 | 1+(35.0−20.2i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(27.1−46.9i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−13.5−23.4i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1−1.77iT−5.04e3T2 |
| 73 | 1−128.T+5.32e3T2 |
| 79 | 1+(44.7−77.4i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−15.7−9.08i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1+84.2iT−7.92e3T2 |
| 97 | 1+(37.4−64.7i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.32143904915307726174180028773, −12.28034837440069237123453022988, −11.10717290301032196370551660674, −9.864958407197055635418847604057, −9.401757656530165004181693778958, −7.25235059359507096690457312697, −6.08073553639815848529847940877, −5.18905957539448758885280226002, −4.25038674099498925759634655249, −1.11565100373678170315268059661,
2.13098114588776212177529118565, 4.05898372984993684490149530029, 5.49447388383585520910665762763, 6.35162291282058244088297414316, 7.88213024152732822798377741742, 9.279714830074225644896335472127, 10.59516373451177988568548604947, 11.55981987170713068059208098015, 12.32531150816771816516267553126, 13.29409316175257485271544741916