L(s) = 1 | + (2.73 + 1.58i)2-s + (−2.89 + 0.796i)3-s + (2.99 + 5.19i)4-s + (−6.90 + 3.98i)5-s + (−9.17 − 2.39i)6-s + (−1.88 + 3.27i)7-s + 6.30i·8-s + (7.73 − 4.60i)9-s − 25.2·10-s + (15.3 + 8.84i)11-s + (−12.8 − 12.6i)12-s + (1.80 + 3.12i)13-s + (−10.3 + 5.97i)14-s + (16.8 − 17.0i)15-s + (2.01 − 3.49i)16-s + 6.05i·17-s + ⋯ |
L(s) = 1 | + (1.36 + 0.790i)2-s + (−0.964 + 0.265i)3-s + (0.749 + 1.29i)4-s + (−1.38 + 0.797i)5-s + (−1.52 − 0.398i)6-s + (−0.269 + 0.467i)7-s + 0.788i·8-s + (0.858 − 0.512i)9-s − 2.52·10-s + (1.39 + 0.804i)11-s + (−1.06 − 1.05i)12-s + (0.138 + 0.240i)13-s + (−0.738 + 0.426i)14-s + (1.12 − 1.13i)15-s + (0.126 − 0.218i)16-s + 0.356i·17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(−0.775−0.631i)Λ(3−s)
Λ(s)=(=(117s/2ΓC(s+1)L(s)(−0.775−0.631i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
−0.775−0.631i
|
Analytic conductor: |
3.18801 |
Root analytic conductor: |
1.78550 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(92,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1), −0.775−0.631i)
|
Particular Values
L(23) |
≈ |
0.550510+1.54624i |
L(21) |
≈ |
0.550510+1.54624i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(2.89−0.796i)T |
| 13 | 1+(−1.80−3.12i)T |
good | 2 | 1+(−2.73−1.58i)T+(2+3.46i)T2 |
| 5 | 1+(6.90−3.98i)T+(12.5−21.6i)T2 |
| 7 | 1+(1.88−3.27i)T+(−24.5−42.4i)T2 |
| 11 | 1+(−15.3−8.84i)T+(60.5+104.i)T2 |
| 17 | 1−6.05iT−289T2 |
| 19 | 1−13.2T+361T2 |
| 23 | 1+(24.8−14.3i)T+(264.5−458.i)T2 |
| 29 | 1+(−18.0−10.4i)T+(420.5+728.i)T2 |
| 31 | 1+(21.5+37.2i)T+(−480.5+832.i)T2 |
| 37 | 1−1.44T+1.36e3T2 |
| 41 | 1+(13.0−7.55i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(−21.7+37.6i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(−34.1−19.7i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1−77.4iT−2.80e3T2 |
| 59 | 1+(−79.5+45.9i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(−12.3+21.4i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(63.4+109.i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1+79.9iT−5.04e3T2 |
| 73 | 1−15.5T+5.32e3T2 |
| 79 | 1+(50.7−87.9i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−11.0−6.38i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1−127.iT−7.92e3T2 |
| 97 | 1+(−13.3+23.1i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.92842535145016567514886880899, −12.26229178351239554618603004240, −12.10384978769465358965680144769, −11.10326807782303440323387887359, −9.566775760342048497191516765682, −7.56860590809157225856054059862, −6.77660416126717208033120814367, −5.85199427373986461253086149018, −4.33212105456582657684338852889, −3.66886604993294519558202294254,
0.944237323125544040478075302942, 3.66340202815230792171238206527, 4.42645269970873825266412866247, 5.67054207039197744346902095299, 6.97871357361311155095446160961, 8.483482605916413829736180486136, 10.32442016109587989941354367696, 11.58001575817014546822734064670, 11.76501267831768257687956514148, 12.63420729080294916369187948071