L(s) = 1 | + (3.19 + 1.84i)2-s + (−2.62 − 1.45i)3-s + (4.78 + 8.28i)4-s + (7.14 − 4.12i)5-s + (−5.70 − 9.46i)6-s + (−2.39 + 4.15i)7-s + 20.5i·8-s + (4.78 + 7.62i)9-s + 30.4·10-s + (−12.2 − 7.06i)11-s + (−0.536 − 28.7i)12-s + (1.80 + 3.12i)13-s + (−15.2 + 8.83i)14-s + (−24.7 + 0.462i)15-s + (−18.6 + 32.2i)16-s − 19.3i·17-s + ⋯ |
L(s) = 1 | + (1.59 + 0.920i)2-s + (−0.875 − 0.483i)3-s + (1.19 + 2.07i)4-s + (1.42 − 0.825i)5-s + (−0.950 − 1.57i)6-s + (−0.342 + 0.593i)7-s + 2.56i·8-s + (0.532 + 0.846i)9-s + 3.04·10-s + (−1.11 − 0.641i)11-s + (−0.0447 − 2.39i)12-s + (0.138 + 0.240i)13-s + (−1.09 + 0.630i)14-s + (−1.65 + 0.0308i)15-s + (−1.16 + 2.01i)16-s − 1.14i·17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.613−0.789i)Λ(3−s)
Λ(s)=(=(117s/2ΓC(s+1)L(s)(0.613−0.789i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.613−0.789i
|
Analytic conductor: |
3.18801 |
Root analytic conductor: |
1.78550 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(92,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1), 0.613−0.789i)
|
Particular Values
L(23) |
≈ |
2.47701+1.21191i |
L(21) |
≈ |
2.47701+1.21191i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(2.62+1.45i)T |
| 13 | 1+(−1.80−3.12i)T |
good | 2 | 1+(−3.19−1.84i)T+(2+3.46i)T2 |
| 5 | 1+(−7.14+4.12i)T+(12.5−21.6i)T2 |
| 7 | 1+(2.39−4.15i)T+(−24.5−42.4i)T2 |
| 11 | 1+(12.2+7.06i)T+(60.5+104.i)T2 |
| 17 | 1+19.3iT−289T2 |
| 19 | 1+12.4T+361T2 |
| 23 | 1+(6.83−3.94i)T+(264.5−458.i)T2 |
| 29 | 1+(0.567+0.327i)T+(420.5+728.i)T2 |
| 31 | 1+(1.46+2.53i)T+(−480.5+832.i)T2 |
| 37 | 1+65.5T+1.36e3T2 |
| 41 | 1+(−24.7+14.2i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(−7.83+13.5i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(−59.3−34.2i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1−54.1iT−2.80e3T2 |
| 59 | 1+(41.3−23.8i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(40.5−70.3i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−26.6−46.1i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1+41.0iT−5.04e3T2 |
| 73 | 1+12.7T+5.32e3T2 |
| 79 | 1+(−67.1+116.i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−86.4−49.8i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1+10.4iT−7.92e3T2 |
| 97 | 1+(−70.6+122.i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.57790956701977958987035684570, −12.67644871701404400035993345010, −12.06707090581338709092370427163, −10.61858002471280347548332636818, −8.922431874358970871432335333713, −7.43201530665177185615547818468, −6.11212658846009120777546521445, −5.63498821929614450671684935079, −4.78672274858676219363269240243, −2.46779780707619275535103911354,
2.07283935319548868561533993179, 3.62498583981416343557106342786, 5.03276309343149442699892645269, 5.96425788826780249619441822238, 6.76994141582970310781312134700, 9.836180272944491290950938796104, 10.52590251007965626741888230188, 10.79795523484610385892186232628, 12.39366848634645656215029709311, 13.03762254269407731657641650160