L(s) = 1 | + (−4.65 + 2.68i)2-s + (1.15 + 5.06i)3-s + (10.4 − 18.0i)4-s + (10.1 − 5.86i)5-s + (−18.9 − 20.4i)6-s − 8.42i·7-s + 68.9i·8-s + (−24.3 + 11.7i)9-s + (−31.5 + 54.5i)10-s + (−55.4 + 32.0i)11-s + (103. + 31.8i)12-s + (−38.7 − 26.4i)13-s + (22.6 + 39.1i)14-s + (41.4 + 44.7i)15-s + (−101. − 176. i)16-s + (30.6 + 53.0i)17-s + ⋯ |
L(s) = 1 | + (−1.64 + 0.949i)2-s + (0.222 + 0.974i)3-s + (1.30 − 2.25i)4-s + (0.909 − 0.524i)5-s + (−1.29 − 1.39i)6-s − 0.454i·7-s + 3.04i·8-s + (−0.900 + 0.434i)9-s + (−0.996 + 1.72i)10-s + (−1.52 + 0.877i)11-s + (2.48 + 0.767i)12-s + (−0.826 − 0.563i)13-s + (0.431 + 0.747i)14-s + (0.714 + 0.769i)15-s + (−1.58 − 2.75i)16-s + (0.436 + 0.756i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(−0.741+0.671i)Λ(4−s)
Λ(s)=(=(117s/2ΓC(s+3/2)L(s)(−0.741+0.671i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
−0.741+0.671i
|
Analytic conductor: |
6.90322 |
Root analytic conductor: |
2.62739 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :3/2), −0.741+0.671i)
|
Particular Values
L(2) |
≈ |
0.101113−0.262192i |
L(21) |
≈ |
0.101113−0.262192i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.15−5.06i)T |
| 13 | 1+(38.7+26.4i)T |
good | 2 | 1+(4.65−2.68i)T+(4−6.92i)T2 |
| 5 | 1+(−10.1+5.86i)T+(62.5−108.i)T2 |
| 7 | 1+8.42iT−343T2 |
| 11 | 1+(55.4−32.0i)T+(665.5−1.15e3i)T2 |
| 17 | 1+(−30.6−53.0i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(86.4−49.9i)T+(3.42e3−5.94e3i)T2 |
| 23 | 1+106.T+1.21e4T2 |
| 29 | 1+(−72.3−125.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+(94.2−54.3i)T+(1.48e4−2.57e4i)T2 |
| 37 | 1+(4.75+2.74i)T+(2.53e4+4.38e4i)T2 |
| 41 | 1−66.6iT−6.89e4T2 |
| 43 | 1−331.T+7.95e4T2 |
| 47 | 1+(181.+104.i)T+(5.19e4+8.99e4i)T2 |
| 53 | 1+303.T+1.48e5T2 |
| 59 | 1+(576.+332.i)T+(1.02e5+1.77e5i)T2 |
| 61 | 1−636.T+2.26e5T2 |
| 67 | 1−138.iT−3.00e5T2 |
| 71 | 1+(303.−175.i)T+(1.78e5−3.09e5i)T2 |
| 73 | 1+497.iT−3.89e5T2 |
| 79 | 1+(1.08−1.87i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+(−122.−70.8i)T+(2.85e5+4.95e5i)T2 |
| 89 | 1+(71.9+41.5i)T+(3.52e5+6.10e5i)T2 |
| 97 | 1−510.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.24837799625505357806226848259, −12.70953000800045201468239199780, −10.59654234396214791272125831006, −10.25698743382883838839332583036, −9.528330716970586761839253574481, −8.368244534217071663748407993227, −7.58197968408878284870094761615, −5.91551836310522877792466778480, −5.00551599057266802427988604548, −2.08617030336363324387045663764,
0.22156887258503452094864377313, 2.21425833975579554618019564897, 2.71808599369814176031541099052, 6.05329047659187521770835720503, 7.34012588180400346186298325532, 8.225969374069199945754255820577, 9.253728250899668658568991242054, 10.22127629977443927855227194348, 11.19009276284356258798431461387, 12.16700655449680308005447550270