L(s) = 1 | + (1.38 − 0.284i)2-s − i·3-s + (1.83 − 0.788i)4-s + 2.29i·5-s + (−0.284 − 1.38i)6-s + (2.32 − 1.61i)8-s − 9-s + (0.652 + 3.17i)10-s − 3.88i·11-s + (−0.788 − 1.83i)12-s − 3.33i·13-s + 2.29·15-s + (2.75 − 2.89i)16-s + 0.287·17-s + (−1.38 + 0.284i)18-s + 2.78i·19-s + ⋯ |
L(s) = 1 | + (0.979 − 0.201i)2-s − 0.577i·3-s + (0.919 − 0.394i)4-s + 1.02i·5-s + (−0.116 − 0.565i)6-s + (0.821 − 0.570i)8-s − 0.333·9-s + (0.206 + 1.00i)10-s − 1.17i·11-s + (−0.227 − 0.530i)12-s − 0.924i·13-s + 0.592·15-s + (0.689 − 0.724i)16-s + 0.0696·17-s + (−0.326 + 0.0670i)18-s + 0.638i·19-s + ⋯ |
Λ(s)=(=(1176s/2ΓC(s)L(s)(0.570+0.821i)Λ(2−s)
Λ(s)=(=(1176s/2ΓC(s+1/2)L(s)(0.570+0.821i)Λ(1−s)
Degree: |
2 |
Conductor: |
1176
= 23⋅3⋅72
|
Sign: |
0.570+0.821i
|
Analytic conductor: |
9.39040 |
Root analytic conductor: |
3.06437 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1176(589,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1176, ( :1/2), 0.570+0.821i)
|
Particular Values
L(1) |
≈ |
3.159113199 |
L(21) |
≈ |
3.159113199 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.38+0.284i)T |
| 3 | 1+iT |
| 7 | 1 |
good | 5 | 1−2.29iT−5T2 |
| 11 | 1+3.88iT−11T2 |
| 13 | 1+3.33iT−13T2 |
| 17 | 1−0.287T+17T2 |
| 19 | 1−2.78iT−19T2 |
| 23 | 1−6.53T+23T2 |
| 29 | 1+5.53iT−29T2 |
| 31 | 1−7.44T+31T2 |
| 37 | 1+5.95iT−37T2 |
| 41 | 1+3.51T+41T2 |
| 43 | 1−11.2iT−43T2 |
| 47 | 1−0.0870T+47T2 |
| 53 | 1−7.05iT−53T2 |
| 59 | 1−4.35iT−59T2 |
| 61 | 1−7.16iT−61T2 |
| 67 | 1−13.0iT−67T2 |
| 71 | 1+6.18T+71T2 |
| 73 | 1+13.8T+73T2 |
| 79 | 1+8.99T+79T2 |
| 83 | 1+17.6iT−83T2 |
| 89 | 1+17.1T+89T2 |
| 97 | 1−6.46T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05731180533401289451572450174, −8.653725498413360988664545888028, −7.71536665416778399533912934490, −7.02727572644110572327724388268, −6.08373128480821660270033953207, −5.69059851095762075778364390229, −4.35617049502888137394547896143, −3.03866280580582377963606065555, −2.82640320801382722441521484157, −1.12084594579307544412662433524,
1.58221013512802512833152053653, 2.88760348580247676857931270739, 4.08331482637001121531241446654, 4.89743067841845845555322476567, 5.12911828299670014468759282368, 6.58652243562235685294951630444, 7.12684501103480246191171871086, 8.347947238876001265953811879296, 9.021936369990172342351499164659, 9.896654557714500448986387941284