L(s) = 1 | + (1.38 − 0.284i)2-s − i·3-s + (1.83 − 0.788i)4-s + 2.29i·5-s + (−0.284 − 1.38i)6-s + (2.32 − 1.61i)8-s − 9-s + (0.652 + 3.17i)10-s − 3.88i·11-s + (−0.788 − 1.83i)12-s − 3.33i·13-s + 2.29·15-s + (2.75 − 2.89i)16-s + 0.287·17-s + (−1.38 + 0.284i)18-s + 2.78i·19-s + ⋯ |
L(s) = 1 | + (0.979 − 0.201i)2-s − 0.577i·3-s + (0.919 − 0.394i)4-s + 1.02i·5-s + (−0.116 − 0.565i)6-s + (0.821 − 0.570i)8-s − 0.333·9-s + (0.206 + 1.00i)10-s − 1.17i·11-s + (−0.227 − 0.530i)12-s − 0.924i·13-s + 0.592·15-s + (0.689 − 0.724i)16-s + 0.0696·17-s + (−0.326 + 0.0670i)18-s + 0.638i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.570 + 0.821i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.570 + 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.159113199\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.159113199\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 + 0.284i)T \) |
| 3 | \( 1 + iT \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 2.29iT - 5T^{2} \) |
| 11 | \( 1 + 3.88iT - 11T^{2} \) |
| 13 | \( 1 + 3.33iT - 13T^{2} \) |
| 17 | \( 1 - 0.287T + 17T^{2} \) |
| 19 | \( 1 - 2.78iT - 19T^{2} \) |
| 23 | \( 1 - 6.53T + 23T^{2} \) |
| 29 | \( 1 + 5.53iT - 29T^{2} \) |
| 31 | \( 1 - 7.44T + 31T^{2} \) |
| 37 | \( 1 + 5.95iT - 37T^{2} \) |
| 41 | \( 1 + 3.51T + 41T^{2} \) |
| 43 | \( 1 - 11.2iT - 43T^{2} \) |
| 47 | \( 1 - 0.0870T + 47T^{2} \) |
| 53 | \( 1 - 7.05iT - 53T^{2} \) |
| 59 | \( 1 - 4.35iT - 59T^{2} \) |
| 61 | \( 1 - 7.16iT - 61T^{2} \) |
| 67 | \( 1 - 13.0iT - 67T^{2} \) |
| 71 | \( 1 + 6.18T + 71T^{2} \) |
| 73 | \( 1 + 13.8T + 73T^{2} \) |
| 79 | \( 1 + 8.99T + 79T^{2} \) |
| 83 | \( 1 + 17.6iT - 83T^{2} \) |
| 89 | \( 1 + 17.1T + 89T^{2} \) |
| 97 | \( 1 - 6.46T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05731180533401289451572450174, −8.653725498413360988664545888028, −7.71536665416778399533912934490, −7.02727572644110572327724388268, −6.08373128480821660270033953207, −5.69059851095762075778364390229, −4.35617049502888137394547896143, −3.03866280580582377963606065555, −2.82640320801382722441521484157, −1.12084594579307544412662433524,
1.58221013512802512833152053653, 2.88760348580247676857931270739, 4.08331482637001121531241446654, 4.89743067841845845555322476567, 5.12911828299670014468759282368, 6.58652243562235685294951630444, 7.12684501103480246191171871086, 8.347947238876001265953811879296, 9.021936369990172342351499164659, 9.896654557714500448986387941284