L(s) = 1 | + (−0.353 + 1.36i)2-s + i·3-s + (−1.75 − 0.967i)4-s − 0.677i·5-s + (−1.36 − 0.353i)6-s + (1.94 − 2.05i)8-s − 9-s + (0.927 + 0.239i)10-s + 1.67i·11-s + (0.967 − 1.75i)12-s + 1.28i·13-s + 0.677·15-s + (2.12 + 3.38i)16-s + 6.36·17-s + (0.353 − 1.36i)18-s − 2.55i·19-s + ⋯ |
L(s) = 1 | + (−0.249 + 0.968i)2-s + 0.577i·3-s + (−0.875 − 0.483i)4-s − 0.302i·5-s + (−0.559 − 0.144i)6-s + (0.687 − 0.726i)8-s − 0.333·9-s + (0.293 + 0.0756i)10-s + 0.503i·11-s + (0.279 − 0.505i)12-s + 0.355i·13-s + 0.174·15-s + (0.531 + 0.846i)16-s + 1.54·17-s + (0.0832 − 0.322i)18-s − 0.585i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.726 - 0.687i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.726 - 0.687i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.198433294\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.198433294\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.353 - 1.36i)T \) |
| 3 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 0.677iT - 5T^{2} \) |
| 11 | \( 1 - 1.67iT - 11T^{2} \) |
| 13 | \( 1 - 1.28iT - 13T^{2} \) |
| 17 | \( 1 - 6.36T + 17T^{2} \) |
| 19 | \( 1 + 2.55iT - 19T^{2} \) |
| 23 | \( 1 + 0.255T + 23T^{2} \) |
| 29 | \( 1 - 6.27iT - 29T^{2} \) |
| 31 | \( 1 + 4.28T + 31T^{2} \) |
| 37 | \( 1 - 6.49iT - 37T^{2} \) |
| 41 | \( 1 + 6.43T + 41T^{2} \) |
| 43 | \( 1 - 5.48iT - 43T^{2} \) |
| 47 | \( 1 - 9.46T + 47T^{2} \) |
| 53 | \( 1 - 5.67iT - 53T^{2} \) |
| 59 | \( 1 + 10.0iT - 59T^{2} \) |
| 61 | \( 1 - 15.2iT - 61T^{2} \) |
| 67 | \( 1 - 15.7iT - 67T^{2} \) |
| 71 | \( 1 + 5.48T + 71T^{2} \) |
| 73 | \( 1 - 2.86T + 73T^{2} \) |
| 79 | \( 1 + 12.1T + 79T^{2} \) |
| 83 | \( 1 + 7.63iT - 83T^{2} \) |
| 89 | \( 1 - 6.80T + 89T^{2} \) |
| 97 | \( 1 + 0.477T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.982311405719972600910347197315, −9.076918152685356013062304276698, −8.594059998589453518337370968109, −7.53954847827431288959276326665, −6.89868838569505661799336154211, −5.78295649378656043678345634263, −5.06798423039091446350988734288, −4.31815485731476592542603498027, −3.16338950347352443313597429646, −1.25445151231524135037595649461,
0.66254226534169940124304381502, 1.93774902825428083885418273904, 3.08028734998574170878697989437, 3.80276961577537153861046095092, 5.21044711639607271806394193618, 5.96503618725259311379554252311, 7.26753931807026089272676095138, 7.923769214911342374822370622411, 8.673183888865787602572940412564, 9.591155278346392311773493716358