L(s) = 1 | + (−0.353 + 1.36i)2-s + i·3-s + (−1.75 − 0.967i)4-s − 0.677i·5-s + (−1.36 − 0.353i)6-s + (1.94 − 2.05i)8-s − 9-s + (0.927 + 0.239i)10-s + 1.67i·11-s + (0.967 − 1.75i)12-s + 1.28i·13-s + 0.677·15-s + (2.12 + 3.38i)16-s + 6.36·17-s + (0.353 − 1.36i)18-s − 2.55i·19-s + ⋯ |
L(s) = 1 | + (−0.249 + 0.968i)2-s + 0.577i·3-s + (−0.875 − 0.483i)4-s − 0.302i·5-s + (−0.559 − 0.144i)6-s + (0.687 − 0.726i)8-s − 0.333·9-s + (0.293 + 0.0756i)10-s + 0.503i·11-s + (0.279 − 0.505i)12-s + 0.355i·13-s + 0.174·15-s + (0.531 + 0.846i)16-s + 1.54·17-s + (0.0832 − 0.322i)18-s − 0.585i·19-s + ⋯ |
Λ(s)=(=(1176s/2ΓC(s)L(s)(−0.726−0.687i)Λ(2−s)
Λ(s)=(=(1176s/2ΓC(s+1/2)L(s)(−0.726−0.687i)Λ(1−s)
Degree: |
2 |
Conductor: |
1176
= 23⋅3⋅72
|
Sign: |
−0.726−0.687i
|
Analytic conductor: |
9.39040 |
Root analytic conductor: |
3.06437 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1176(589,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1176, ( :1/2), −0.726−0.687i)
|
Particular Values
L(1) |
≈ |
1.198433294 |
L(21) |
≈ |
1.198433294 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.353−1.36i)T |
| 3 | 1−iT |
| 7 | 1 |
good | 5 | 1+0.677iT−5T2 |
| 11 | 1−1.67iT−11T2 |
| 13 | 1−1.28iT−13T2 |
| 17 | 1−6.36T+17T2 |
| 19 | 1+2.55iT−19T2 |
| 23 | 1+0.255T+23T2 |
| 29 | 1−6.27iT−29T2 |
| 31 | 1+4.28T+31T2 |
| 37 | 1−6.49iT−37T2 |
| 41 | 1+6.43T+41T2 |
| 43 | 1−5.48iT−43T2 |
| 47 | 1−9.46T+47T2 |
| 53 | 1−5.67iT−53T2 |
| 59 | 1+10.0iT−59T2 |
| 61 | 1−15.2iT−61T2 |
| 67 | 1−15.7iT−67T2 |
| 71 | 1+5.48T+71T2 |
| 73 | 1−2.86T+73T2 |
| 79 | 1+12.1T+79T2 |
| 83 | 1+7.63iT−83T2 |
| 89 | 1−6.80T+89T2 |
| 97 | 1+0.477T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.982311405719972600910347197315, −9.076918152685356013062304276698, −8.594059998589453518337370968109, −7.53954847827431288959276326665, −6.89868838569505661799336154211, −5.78295649378656043678345634263, −5.06798423039091446350988734288, −4.31815485731476592542603498027, −3.16338950347352443313597429646, −1.25445151231524135037595649461,
0.66254226534169940124304381502, 1.93774902825428083885418273904, 3.08028734998574170878697989437, 3.80276961577537153861046095092, 5.21044711639607271806394193618, 5.96503618725259311379554252311, 7.26753931807026089272676095138, 7.923769214911342374822370622411, 8.673183888865787602572940412564, 9.591155278346392311773493716358