L(s) = 1 | + (0.0935 + 1.72i)3-s + 3.34·5-s + (−2.98 + 0.323i)9-s − 3.53i·11-s + 5.57i·13-s + (0.312 + 5.78i)15-s + 0.803·17-s + 0.615i·19-s + 8.47i·23-s + 6.17·25-s + (−0.838 − 5.12i)27-s + 7.09i·29-s − 3.25i·31-s + (6.10 − 0.330i)33-s + 7.31·37-s + ⋯ |
L(s) = 1 | + (0.0540 + 0.998i)3-s + 1.49·5-s + (−0.994 + 0.107i)9-s − 1.06i·11-s + 1.54i·13-s + (0.0807 + 1.49i)15-s + 0.194·17-s + 0.141i·19-s + 1.76i·23-s + 1.23·25-s + (−0.161 − 0.986i)27-s + 1.31i·29-s − 0.584i·31-s + (1.06 − 0.0575i)33-s + 1.20·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.102 - 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.102 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.067055456\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.067055456\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.0935 - 1.72i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 3.34T + 5T^{2} \) |
| 11 | \( 1 + 3.53iT - 11T^{2} \) |
| 13 | \( 1 - 5.57iT - 13T^{2} \) |
| 17 | \( 1 - 0.803T + 17T^{2} \) |
| 19 | \( 1 - 0.615iT - 19T^{2} \) |
| 23 | \( 1 - 8.47iT - 23T^{2} \) |
| 29 | \( 1 - 7.09iT - 29T^{2} \) |
| 31 | \( 1 + 3.25iT - 31T^{2} \) |
| 37 | \( 1 - 7.31T + 37T^{2} \) |
| 41 | \( 1 - 10.8T + 41T^{2} \) |
| 43 | \( 1 + 6.16T + 43T^{2} \) |
| 47 | \( 1 - 7.19T + 47T^{2} \) |
| 53 | \( 1 - 2.45iT - 53T^{2} \) |
| 59 | \( 1 + 8.40T + 59T^{2} \) |
| 61 | \( 1 + 2.68iT - 61T^{2} \) |
| 67 | \( 1 + 4.00T + 67T^{2} \) |
| 71 | \( 1 + 6.75iT - 71T^{2} \) |
| 73 | \( 1 + 10.9iT - 73T^{2} \) |
| 79 | \( 1 + 9.97T + 79T^{2} \) |
| 83 | \( 1 - 11.6T + 83T^{2} \) |
| 89 | \( 1 + 9.76T + 89T^{2} \) |
| 97 | \( 1 - 13.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.672224873646761244812684747976, −9.365303818958938874951819502301, −8.750379696621020908245901074114, −7.52599161382385732495790704293, −6.22393249002358400566084288198, −5.80998674315960262245993835023, −4.90854475496908524692976280911, −3.83423919729528031733486894322, −2.79695938542781200273447650337, −1.58779282569329900144404677416,
0.931856086878488422382193017219, 2.23420993379557670498299956469, 2.78487574664280331485650664881, 4.56958241620693350333620715604, 5.67067373953207473868060657271, 6.12672018469745108954791143352, 7.05420903168583259570261917562, 7.890451350959863084019341498717, 8.702783570382861499486558211933, 9.691249024823703931210788585395