L(s) = 1 | + (1.48 + 0.884i)3-s + 0.992·5-s + (1.43 + 2.63i)9-s + 2.50i·11-s + 6.74i·13-s + (1.47 + 0.877i)15-s − 3.75·17-s − 2.67i·19-s + 1.74i·23-s − 4.01·25-s + (−0.190 + 5.19i)27-s − 6.69i·29-s + 2.82i·31-s + (−2.21 + 3.73i)33-s − 3.28·37-s + ⋯ |
L(s) = 1 | + (0.859 + 0.510i)3-s + 0.443·5-s + (0.478 + 0.877i)9-s + 0.756i·11-s + 1.87i·13-s + (0.381 + 0.226i)15-s − 0.911·17-s − 0.612i·19-s + 0.364i·23-s − 0.803·25-s + (−0.0366 + 0.999i)27-s − 1.24i·29-s + 0.507i·31-s + (−0.386 + 0.650i)33-s − 0.539·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.114 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.114 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.234497611\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.234497611\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.48 - 0.884i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 0.992T + 5T^{2} \) |
| 11 | \( 1 - 2.50iT - 11T^{2} \) |
| 13 | \( 1 - 6.74iT - 13T^{2} \) |
| 17 | \( 1 + 3.75T + 17T^{2} \) |
| 19 | \( 1 + 2.67iT - 19T^{2} \) |
| 23 | \( 1 - 1.74iT - 23T^{2} \) |
| 29 | \( 1 + 6.69iT - 29T^{2} \) |
| 31 | \( 1 - 2.82iT - 31T^{2} \) |
| 37 | \( 1 + 3.28T + 37T^{2} \) |
| 41 | \( 1 - 9.02T + 41T^{2} \) |
| 43 | \( 1 - 10.6T + 43T^{2} \) |
| 47 | \( 1 - 10.5T + 47T^{2} \) |
| 53 | \( 1 + 10.2iT - 53T^{2} \) |
| 59 | \( 1 - 4.64T + 59T^{2} \) |
| 61 | \( 1 - 8.05iT - 61T^{2} \) |
| 67 | \( 1 + 6.69T + 67T^{2} \) |
| 71 | \( 1 - 4.56iT - 71T^{2} \) |
| 73 | \( 1 + 3.23iT - 73T^{2} \) |
| 79 | \( 1 + 14.4T + 79T^{2} \) |
| 83 | \( 1 - 16.8T + 83T^{2} \) |
| 89 | \( 1 + 3.17T + 89T^{2} \) |
| 97 | \( 1 - 0.989iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.611651189816291148038535751235, −9.318369458758999465391890899777, −8.575013721919964448384375788830, −7.43713736210778902843428255438, −6.84045834667892742814105013993, −5.69647388092264375035525511282, −4.40044746901993852954498595219, −4.12999367129053324957811455822, −2.51801416501138672679477822540, −1.88133494075344524241816345993,
0.874294284007256595537399700086, 2.30356110565696414479569139242, 3.13979667176962058958629142087, 4.14447945244788738326221063814, 5.60401587811545343574184893769, 6.13363542528387610860929910869, 7.33258592142726528304347310476, 7.941891803995345707602649279261, 8.750882495401299434336474468616, 9.384384568244965374219052087383