L(s) = 1 | + (0.5 + 0.866i)3-s + (1 − 1.73i)5-s + (−0.499 + 0.866i)9-s + (−2 − 3.46i)11-s − 2·13-s + 1.99·15-s + (−1 − 1.73i)17-s + (2 − 3.46i)19-s + (4 − 6.92i)23-s + (0.500 + 0.866i)25-s − 0.999·27-s + 6·29-s + (−4 − 6.92i)31-s + (1.99 − 3.46i)33-s + (−3 + 5.19i)37-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (0.447 − 0.774i)5-s + (−0.166 + 0.288i)9-s + (−0.603 − 1.04i)11-s − 0.554·13-s + 0.516·15-s + (−0.242 − 0.420i)17-s + (0.458 − 0.794i)19-s + (0.834 − 1.44i)23-s + (0.100 + 0.173i)25-s − 0.192·27-s + 1.11·29-s + (−0.718 − 1.24i)31-s + (0.348 − 0.603i)33-s + (−0.493 + 0.854i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.630172600\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.630172600\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1 + 1.73i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2 + 3.46i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2T + 13T^{2} \) |
| 17 | \( 1 + (1 + 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2 + 3.46i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4 + 6.92i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (4 + 6.92i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3 - 5.19i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1 - 1.73i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2 + 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 + 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + (5 + 8.66i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4 + 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 4T + 83T^{2} \) |
| 89 | \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.483509639300566864530743596231, −8.859029203162157645556683985493, −8.253465339169081962557179281522, −7.19606435561194585456817772159, −6.14364745377578558559126635252, −5.08427308143170178175268646645, −4.71275716493911233208348817303, −3.27481007839388137981136165915, −2.39971869454034995860714342133, −0.67598066245933542679691704562,
1.62060026121176131173092243339, 2.58325468363444107765005096270, 3.53850914002634254838330623309, 4.90602183779018520341297399732, 5.75164118249395832507971187875, 6.90671324548128995301522749854, 7.23974721291906822564795327381, 8.180636641101783764424918200312, 9.166535085941774680575927494016, 10.02426693125771851321324607233