L(s) = 1 | + (0.5 + 0.866i)3-s + (1 − 1.73i)5-s + (−0.499 + 0.866i)9-s + (−2 − 3.46i)11-s − 2·13-s + 1.99·15-s + (−1 − 1.73i)17-s + (2 − 3.46i)19-s + (4 − 6.92i)23-s + (0.500 + 0.866i)25-s − 0.999·27-s + 6·29-s + (−4 − 6.92i)31-s + (1.99 − 3.46i)33-s + (−3 + 5.19i)37-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (0.447 − 0.774i)5-s + (−0.166 + 0.288i)9-s + (−0.603 − 1.04i)11-s − 0.554·13-s + 0.516·15-s + (−0.242 − 0.420i)17-s + (0.458 − 0.794i)19-s + (0.834 − 1.44i)23-s + (0.100 + 0.173i)25-s − 0.192·27-s + 1.11·29-s + (−0.718 − 1.24i)31-s + (0.348 − 0.603i)33-s + (−0.493 + 0.854i)37-s + ⋯ |
Λ(s)=(=(1176s/2ΓC(s)L(s)(0.386+0.922i)Λ(2−s)
Λ(s)=(=(1176s/2ΓC(s+1/2)L(s)(0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
1176
= 23⋅3⋅72
|
Sign: |
0.386+0.922i
|
Analytic conductor: |
9.39040 |
Root analytic conductor: |
3.06437 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1176(961,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1176, ( :1/2), 0.386+0.922i)
|
Particular Values
L(1) |
≈ |
1.630172600 |
L(21) |
≈ |
1.630172600 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.5−0.866i)T |
| 7 | 1 |
good | 5 | 1+(−1+1.73i)T+(−2.5−4.33i)T2 |
| 11 | 1+(2+3.46i)T+(−5.5+9.52i)T2 |
| 13 | 1+2T+13T2 |
| 17 | 1+(1+1.73i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2+3.46i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−4+6.92i)T+(−11.5−19.9i)T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+(4+6.92i)T+(−15.5+26.8i)T2 |
| 37 | 1+(3−5.19i)T+(−18.5−32.0i)T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1+(−23.5−40.7i)T2 |
| 53 | 1+(−1−1.73i)T+(−26.5+45.8i)T2 |
| 59 | 1+(2+3.46i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−1+1.73i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−2−3.46i)T+(−33.5+58.0i)T2 |
| 71 | 1−8T+71T2 |
| 73 | 1+(5+8.66i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−4+6.92i)T+(−39.5−68.4i)T2 |
| 83 | 1+4T+83T2 |
| 89 | 1+(−3+5.19i)T+(−44.5−77.0i)T2 |
| 97 | 1−2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.483509639300566864530743596231, −8.859029203162157645556683985493, −8.253465339169081962557179281522, −7.19606435561194585456817772159, −6.14364745377578558559126635252, −5.08427308143170178175268646645, −4.71275716493911233208348817303, −3.27481007839388137981136165915, −2.39971869454034995860714342133, −0.67598066245933542679691704562,
1.62060026121176131173092243339, 2.58325468363444107765005096270, 3.53850914002634254838330623309, 4.90602183779018520341297399732, 5.75164118249395832507971187875, 6.90671324548128995301522749854, 7.23974721291906822564795327381, 8.180636641101783764424918200312, 9.166535085941774680575927494016, 10.02426693125771851321324607233