L(s) = 1 | + (−0.5 + 0.866i)2-s + (1.5 + 2.59i)3-s + (0.500 + 0.866i)4-s + (−1.5 + 2.59i)5-s − 3·6-s + (0.5 − 2.59i)7-s − 3·8-s + (−3 + 5.19i)9-s + (−1.5 − 2.59i)10-s + (1.5 + 2.59i)11-s + (−1.49 + 2.59i)12-s + (2 + 1.73i)14-s − 9·15-s + (0.500 − 0.866i)16-s + (1 + 1.73i)17-s + (−3 − 5.19i)18-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.866 + 1.49i)3-s + (0.250 + 0.433i)4-s + (−0.670 + 1.16i)5-s − 1.22·6-s + (0.188 − 0.981i)7-s − 1.06·8-s + (−1 + 1.73i)9-s + (−0.474 − 0.821i)10-s + (0.452 + 0.783i)11-s + (−0.433 + 0.749i)12-s + (0.534 + 0.462i)14-s − 2.32·15-s + (0.125 − 0.216i)16-s + (0.242 + 0.420i)17-s + (−0.707 − 1.22i)18-s + ⋯ |
Λ(s)=(=(1183s/2ΓC(s)L(s)(−0.605+0.795i)Λ(2−s)
Λ(s)=(=(1183s/2ΓC(s+1/2)L(s)(−0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
1183
= 7⋅132
|
Sign: |
−0.605+0.795i
|
Analytic conductor: |
9.44630 |
Root analytic conductor: |
3.07348 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1183(170,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1183, ( :1/2), −0.605+0.795i)
|
Particular Values
L(1) |
≈ |
1.538855597 |
L(21) |
≈ |
1.538855597 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−0.5+2.59i)T |
| 13 | 1 |
good | 2 | 1+(0.5−0.866i)T+(−1−1.73i)T2 |
| 3 | 1+(−1.5−2.59i)T+(−1.5+2.59i)T2 |
| 5 | 1+(1.5−2.59i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−1.5−2.59i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1−1.73i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.5+0.866i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1−7T+29T2 |
| 31 | 1+(1.5+2.59i)T+(−15.5+26.8i)T2 |
| 37 | 1+(1−1.73i)T+(−18.5−32.0i)T2 |
| 41 | 1−3T+41T2 |
| 43 | 1+7T+43T2 |
| 47 | 1+(0.5−0.866i)T+(−23.5−40.7i)T2 |
| 53 | 1+(1.5+2.59i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−2−3.46i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−6.5+11.2i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.5−2.59i)T+(−33.5+58.0i)T2 |
| 71 | 1−13T+71T2 |
| 73 | 1+(−6.5−11.2i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−1.5+2.59i)T+(−39.5−68.4i)T2 |
| 83 | 1+83T2 |
| 89 | 1+(3−5.19i)T+(−44.5−77.0i)T2 |
| 97 | 1+5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06079988770602998195650327371, −9.589472085088987738886881322831, −8.457303233765370896824918830598, −7.960343463594599175013528876389, −7.13384198679466693510945879505, −6.51996515340616316203865059603, −4.92776849126758214528802585870, −3.90684296154350397270770949835, −3.50523013181163719205874532464, −2.51767491301095379565245519379,
0.68640472950616425433565807329, 1.50910939711207774995178201881, 2.53984078477029957018061134867, 3.44397887691165123366912573880, 5.06524301912545564168067974061, 6.01276094989407434318296635795, 6.81035681456118698446561915609, 7.924630696192998327259565704011, 8.601413937958611170742838679339, 8.880551276128510091210319388905