L(s) = 1 | + (−0.5 + 0.866i)2-s + (1.5 + 2.59i)3-s + (0.500 + 0.866i)4-s + (−1.5 + 2.59i)5-s − 3·6-s + (0.5 − 2.59i)7-s − 3·8-s + (−3 + 5.19i)9-s + (−1.5 − 2.59i)10-s + (1.5 + 2.59i)11-s + (−1.49 + 2.59i)12-s + (2 + 1.73i)14-s − 9·15-s + (0.500 − 0.866i)16-s + (1 + 1.73i)17-s + (−3 − 5.19i)18-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.866 + 1.49i)3-s + (0.250 + 0.433i)4-s + (−0.670 + 1.16i)5-s − 1.22·6-s + (0.188 − 0.981i)7-s − 1.06·8-s + (−1 + 1.73i)9-s + (−0.474 − 0.821i)10-s + (0.452 + 0.783i)11-s + (−0.433 + 0.749i)12-s + (0.534 + 0.462i)14-s − 2.32·15-s + (0.125 − 0.216i)16-s + (0.242 + 0.420i)17-s + (−0.707 − 1.22i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.538855597\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.538855597\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.5 + 2.59i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.5 - 2.59i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.5 - 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1 - 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 7T + 29T^{2} \) |
| 31 | \( 1 + (1.5 + 2.59i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 3T + 41T^{2} \) |
| 43 | \( 1 + 7T + 43T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.5 + 2.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2 - 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.5 + 11.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 2.59i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 13T + 71T^{2} \) |
| 73 | \( 1 + (-6.5 - 11.2i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.5 + 2.59i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06079988770602998195650327371, −9.589472085088987738886881322831, −8.457303233765370896824918830598, −7.960343463594599175013528876389, −7.13384198679466693510945879505, −6.51996515340616316203865059603, −4.92776849126758214528802585870, −3.90684296154350397270770949835, −3.50523013181163719205874532464, −2.51767491301095379565245519379,
0.68640472950616425433565807329, 1.50910939711207774995178201881, 2.53984078477029957018061134867, 3.44397887691165123366912573880, 5.06524301912545564168067974061, 6.01276094989407434318296635795, 6.81035681456118698446561915609, 7.924630696192998327259565704011, 8.601413937958611170742838679339, 8.880551276128510091210319388905