L(s) = 1 | + (0.777 − 1.34i)2-s + (0.244 + 0.423i)3-s + (−0.208 − 0.361i)4-s + (−0.595 + 1.03i)5-s + 0.760·6-s + (−2.10 − 1.60i)7-s + 2.46·8-s + (1.38 − 2.39i)9-s + (0.926 + 1.60i)10-s + (1.05 + 1.83i)11-s + (0.102 − 0.176i)12-s + (−3.79 + 1.58i)14-s − 0.582·15-s + (2.33 − 4.03i)16-s + (0.453 + 0.784i)17-s + (−2.14 − 3.71i)18-s + ⋯ |
L(s) = 1 | + (0.549 − 0.952i)2-s + (0.141 + 0.244i)3-s + (−0.104 − 0.180i)4-s + (−0.266 + 0.461i)5-s + 0.310·6-s + (−0.795 − 0.606i)7-s + 0.870·8-s + (0.460 − 0.796i)9-s + (0.292 + 0.507i)10-s + (0.319 + 0.552i)11-s + (0.0294 − 0.0510i)12-s + (−1.01 + 0.423i)14-s − 0.150·15-s + (0.582 − 1.00i)16-s + (0.109 + 0.190i)17-s + (−0.505 − 0.876i)18-s + ⋯ |
Λ(s)=(=(1183s/2ΓC(s)L(s)(0.443+0.896i)Λ(2−s)
Λ(s)=(=(1183s/2ΓC(s+1/2)L(s)(0.443+0.896i)Λ(1−s)
Degree: |
2 |
Conductor: |
1183
= 7⋅132
|
Sign: |
0.443+0.896i
|
Analytic conductor: |
9.44630 |
Root analytic conductor: |
3.07348 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1183(170,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1183, ( :1/2), 0.443+0.896i)
|
Particular Values
L(1) |
≈ |
2.422679555 |
L(21) |
≈ |
2.422679555 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(2.10+1.60i)T |
| 13 | 1 |
good | 2 | 1+(−0.777+1.34i)T+(−1−1.73i)T2 |
| 3 | 1+(−0.244−0.423i)T+(−1.5+2.59i)T2 |
| 5 | 1+(0.595−1.03i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−1.05−1.83i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−0.453−0.784i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−3.34+5.79i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.79−3.11i)T+(−11.5−19.9i)T2 |
| 29 | 1−8.51T+29T2 |
| 31 | 1+(2.64+4.57i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−2.49+4.32i)T+(−18.5−32.0i)T2 |
| 41 | 1+1.53T+41T2 |
| 43 | 1−5.43T+43T2 |
| 47 | 1+(1.59−2.75i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−1.41−2.44i)T+(−26.5+45.8i)T2 |
| 59 | 1+(5.12+8.87i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−4.13+7.16i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.87+3.24i)T+(−33.5+58.0i)T2 |
| 71 | 1−2.53T+71T2 |
| 73 | 1+(2.86+4.96i)T+(−36.5+63.2i)T2 |
| 79 | 1+(3.03−5.25i)T+(−39.5−68.4i)T2 |
| 83 | 1−11.6T+83T2 |
| 89 | 1+(8.87−15.3i)T+(−44.5−77.0i)T2 |
| 97 | 1+6.20T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.663462627797668557186692487970, −9.313622942302346456573153905952, −7.77330203229884603687212143098, −7.10097167260249919661625884375, −6.43347808451808237585485567288, −4.94446309557233005908152603539, −4.02561259918712677504957173439, −3.45405627960306554778699978084, −2.60294050096516126781072825289, −1.04924157333087649608616258112,
1.31419221073868059339927177403, 2.78485035540348492701607993728, 4.06535255803155628758156935480, 4.95525213408729393763373886049, 5.78932040341223639429079743594, 6.49030320296202459605901133032, 7.30213037947084382964322267532, 8.188326779350736915381404210398, 8.722159991304477519653849260292, 10.03812672363387026260317802677