L(s) = 1 | + 2·2-s + 3-s + 6·4-s + 5-s + 2·6-s − 6·7-s + 10·8-s + 11·9-s + 2·10-s + 4·11-s + 6·12-s − 12·14-s + 15-s + 22·16-s + 5·17-s + 22·18-s − 19-s + 6·20-s − 6·21-s + 8·22-s − 23-s + 10·24-s + 19·25-s + 10·27-s − 36·28-s − 6·29-s + 2·30-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 0.577·3-s + 3·4-s + 0.447·5-s + 0.816·6-s − 2.26·7-s + 3.53·8-s + 11/3·9-s + 0.632·10-s + 1.20·11-s + 1.73·12-s − 3.20·14-s + 0.258·15-s + 11/2·16-s + 1.21·17-s + 5.18·18-s − 0.229·19-s + 1.34·20-s − 1.30·21-s + 1.70·22-s − 0.208·23-s + 2.04·24-s + 19/5·25-s + 1.92·27-s − 6.80·28-s − 1.11·29-s + 0.365·30-s + ⋯ |
Λ(s)=(=((712⋅1324)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((712⋅1324)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
516.7067971 |
L(21) |
≈ |
516.7067971 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+6T+15T2+54T3+219T4+516T5+1069T6+516pT7+219p2T8+54p3T9+15p4T10+6p5T11+p6T12 |
| 13 | 1 |
good | 2 | 1−pT−pT2+3pT3−pT4−pT5+7T6−pT7−7pT8+3pT9−5p2T10−5p2T11+153T12−5p3T13−5p4T14+3p4T15−7p5T16−p6T17+7p6T18−p8T19−p9T20+3p10T21−p11T22−p12T23+p12T24 |
| 3 | 1−T−10T2+11T3+53T4−62T5−167T6+221T7+98pT8−535T9+79T10+604T11−1559T12+604pT13+79p2T14−535p3T15+98p5T16+221p5T17−167p6T18−62p7T19+53p8T20+11p9T21−10p10T22−p11T23+p12T24 |
| 5 | 1−T−18T2−pT3+193T4+192T5−1181T6−2139T7+908pT8+451p2T9−6679T10−26266T11+249T12−26266pT13−6679p2T14+451p5T15+908p5T16−2139p5T17−1181p6T18+192p7T19+193p8T20−p10T21−18p10T22−p11T23+p12T24 |
| 11 | 1−4T−29T2+108T3+477T4−113pT5−6686T6+7665T7+89323T8+423T9−1282040T10−249219T11+16505087T12−249219pT13−1282040p2T14+423p3T15+89323p4T16+7665p5T17−6686p6T18−113p8T19+477p8T20+108p9T21−29p10T22−4p11T23+p12T24 |
| 17 | 1−5T−65T2+372T3+2506T4−15344T5−62063T6+395128T7+1158376T8−6526599T9−17123414T10+46016896T11+268434807T12+46016896pT13−17123414p2T14−6526599p3T15+1158376p4T16+395128p5T17−62063p6T18−15344p7T19+2506p8T20+372p9T21−65p10T22−5p11T23+p12T24 |
| 19 | 1+T−49T2+82T3+1336T4−4335T5−10907T6+99626T7−263580T8−1110690T9+9684539T10+2414194T11−215227743T12+2414194pT13+9684539p2T14−1110690p3T15−263580p4T16+99626p5T17−10907p6T18−4335p7T19+1336p8T20+82p9T21−49p10T22+p11T23+p12T24 |
| 23 | 1+T−31T2−72T3−242T4+619T5+6343T6+28360T7+121372T8−9024pT9+5143119T10−4729028T11−273608319T12−4729028pT13+5143119p2T14−9024p4T15+121372p4T16+28360p5T17+6343p6T18+619p7T19−242p8T20−72p9T21−31p10T22+p11T23+p12T24 |
| 29 | (1+3T+96T2+191T3+4061T4+5126T5+122643T6+5126pT7+4061p2T8+191p3T9+96p4T10+3p5T11+p6T12)2 |
| 31 | 1−16T+20T2+594T3+2163T4−43649T5−56125T6+1282696T7+2984747T8−22743273T9−180497697T10+655302586T11+2182678017T12+655302586pT13−180497697p2T14−22743273p3T15+2984747p4T16+1282696p5T17−56125p6T18−43649p7T19+2163p8T20+594p9T21+20p10T22−16p11T23+p12T24 |
| 37 | 1+13T−15T2+284T3+12996T4+18401T5−116147T6+5523346T7+19538810T8−71463812T9+1452640399T10+7689412934T11−18842100883T12+7689412934pT13+1452640399p2T14−71463812p3T15+19538810p4T16+5523346p5T17−116147p6T18+18401p7T19+12996p8T20+284p9T21−15p10T22+13p11T23+p12T24 |
| 41 | (1−8T+225T2−1362T3+21488T4−101725T5+1145451T6−101725pT7+21488p2T8−1362p3T9+225p4T10−8p5T11+p6T12)2 |
| 43 | (1−11T+259T2−2099T3+27622T4−170696T5+1576761T6−170696pT7+27622p2T8−2099p3T9+259p4T10−11p5T11+p6T12)2 |
| 47 | 1+T−104T2−189T3+5335T4+164pT5−69863T6+514255T7−7627520T8−55687467T9+662939941T10+1686387922T11−35399065407T12+1686387922pT13+662939941p2T14−55687467p3T15−7627520p4T16+514255p5T17−69863p6T18+164p8T19+5335p8T20−189p9T21−104p10T22+p11T23+p12T24 |
| 53 | 1+2T−214T2−252T3+24796T4+13772T5−1921862T6+82142T7+113089342T8−43114584T9−5653831794T10+1443208718T11+285781391787T12+1443208718pT13−5653831794p2T14−43114584p3T15+113089342p4T16+82142p5T17−1921862p6T18+13772p7T19+24796p8T20−252p9T21−214p10T22+2p11T23+p12T24 |
| 59 | 1−13T−126T2+1843T3+11161T4−119322T5−1337447T6+7367025T7+123366322T8−382593671T9−9090177085T10+8156701016T11+592237594305T12+8156701016pT13−9090177085p2T14−382593671p3T15+123366322p4T16+7367025p5T17−1337447p6T18−119322p7T19+11161p8T20+1843p9T21−126p10T22−13p11T23+p12T24 |
| 61 | 1+5T−140T2−373T3+8487T4−5202T5−147441T6+963135T7−4711566T8−13690661T9−1296684385T10−689962304T11+162150963097T12−689962304pT13−1296684385p2T14−13690661p3T15−4711566p4T16+963135p5T17−147441p6T18−5202p7T19+8487p8T20−373p9T21−140p10T22+5p11T23+p12T24 |
| 67 | 1+11T−175T2−2336T3+15663T4+247450T5−15954pT6−18125445T7+60512732T8+977936543T9−2490157221T10−26393757979T11+95373451231T12−26393757979pT13−2490157221p2T14+977936543p3T15+60512732p4T16−18125445p5T17−15954p7T18+247450p7T19+15663p8T20−2336p9T21−175p10T22+11p11T23+p12T24 |
| 71 | (1+6T+285T2+14pT3+35468T4+74185T5+2901951T6+74185pT7+35468p2T8+14p4T9+285p4T10+6p5T11+p6T12)2 |
| 73 | 1+30T+224T2−1118T3−5021T4+290169T5+1854677T6−9817892T7−27971653T8+688598777T9−1819010273T10−20701972840T11+235631264151T12−20701972840pT13−1819010273p2T14+688598777p3T15−27971653p4T16−9817892p5T17+1854677p6T18+290169p7T19−5021p8T20−1118p9T21+224p10T22+30p11T23+p12T24 |
| 79 | 1−7T−277T2+2628T3+34995T4−387429T5−3070086T6+26237658T7+339376855T8−565746882T9−45365142063T10−8895648284T11+4474615429807T12−8895648284pT13−45365142063p2T14−565746882p3T15+339376855p4T16+26237658p5T17−3070086p6T18−387429p7T19+34995p8T20+2628p9T21−277p10T22−7p11T23+p12T24 |
| 83 | (1+27T+656T2+10802T3+153994T4+1760871T5+17670883T6+1760871pT7+153994p2T8+10802p3T9+656p4T10+27p5T11+p6T12)2 |
| 89 | 1−4T−151T2+2628T3+262T4−309046T5+2802769T6+6034970T7−281402495T8+1666391304T9+5367237150T10−95837476354T11+701675320941T12−95837476354pT13+5367237150p2T14+1666391304p3T15−281402495p4T16+6034970p5T17+2802769p6T18−309046p7T19+262p8T20+2628p9T21−151p10T22−4p11T23+p12T24 |
| 97 | (1−35T+947T2−18161T3+281670T4−3629766T5+38644781T6−3629766pT7+281670p2T8−18161p3T9+947p4T10−35p5T11+p6T12)2 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.13679713754667639444242213842, −3.04542252205656983029221781959, −2.85949635619482549788466658570, −2.85446628604575294612051890057, −2.78283243420235661771960741806, −2.65223387478996395545338192992, −2.61421934187211140168286093510, −2.58637762954337047507637185959, −2.39674073322770788286633990806, −2.18393441743156440932815716528, −1.98717490099525154133052795015, −1.87410683825105462642809504180, −1.86498835157656590535755585547, −1.79404808333237189492533285548, −1.77495561398805324496363258538, −1.76556814732911963227987015914, −1.62481084358282326141045090172, −1.29710065117532689406433266524, −1.16527599217888866878367137103, −0.882986977365847155704218535426, −0.875041436693927283282975098719, −0.826931056324815880384631235460, −0.822757818520953141613265308000, −0.67078506398929520254109184985, −0.46661322384760203045745736940,
0.46661322384760203045745736940, 0.67078506398929520254109184985, 0.822757818520953141613265308000, 0.826931056324815880384631235460, 0.875041436693927283282975098719, 0.882986977365847155704218535426, 1.16527599217888866878367137103, 1.29710065117532689406433266524, 1.62481084358282326141045090172, 1.76556814732911963227987015914, 1.77495561398805324496363258538, 1.79404808333237189492533285548, 1.86498835157656590535755585547, 1.87410683825105462642809504180, 1.98717490099525154133052795015, 2.18393441743156440932815716528, 2.39674073322770788286633990806, 2.58637762954337047507637185959, 2.61421934187211140168286093510, 2.65223387478996395545338192992, 2.78283243420235661771960741806, 2.85446628604575294612051890057, 2.85949635619482549788466658570, 3.04542252205656983029221781959, 3.13679713754667639444242213842
Plot not available for L-functions of degree greater than 10.