L(s) = 1 | + (−0.00118 − 0.00205i)2-s + (1.54 − 2.68i)3-s + (0.999 − 1.73i)4-s + (0.565 + 0.979i)5-s − 0.00733·6-s + (−2.64 − 0.0383i)7-s − 0.00946·8-s + (−3.29 − 5.71i)9-s + (0.00133 − 0.00231i)10-s + (2.23 − 3.87i)11-s + (−3.09 − 5.36i)12-s + (0.00305 + 0.00546i)14-s + 3.50·15-s + (−1.99 − 3.46i)16-s + (−1.94 + 3.36i)17-s + (−0.00781 + 0.0135i)18-s + ⋯ |
L(s) = 1 | + (−0.000836 − 0.00144i)2-s + (0.894 − 1.54i)3-s + (0.499 − 0.866i)4-s + (0.252 + 0.438i)5-s − 0.00299·6-s + (−0.999 − 0.0144i)7-s − 0.00334·8-s + (−1.09 − 1.90i)9-s + (0.000423 − 0.000733i)10-s + (0.675 − 1.16i)11-s + (−0.894 − 1.54i)12-s + (0.000815 + 0.00146i)14-s + 0.905·15-s + (−0.499 − 0.866i)16-s + (−0.471 + 0.816i)17-s + (−0.00184 + 0.00318i)18-s + ⋯ |
Λ(s)=(=(1183s/2ΓC(s)L(s)(−0.902+0.431i)Λ(2−s)
Λ(s)=(=(1183s/2ΓC(s+1/2)L(s)(−0.902+0.431i)Λ(1−s)
Degree: |
2 |
Conductor: |
1183
= 7⋅132
|
Sign: |
−0.902+0.431i
|
Analytic conductor: |
9.44630 |
Root analytic conductor: |
3.07348 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1183(508,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1183, ( :1/2), −0.902+0.431i)
|
Particular Values
L(1) |
≈ |
2.174224692 |
L(21) |
≈ |
2.174224692 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(2.64+0.0383i)T |
| 13 | 1 |
good | 2 | 1+(0.00118+0.00205i)T+(−1+1.73i)T2 |
| 3 | 1+(−1.54+2.68i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−0.565−0.979i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−2.23+3.87i)T+(−5.5−9.52i)T2 |
| 17 | 1+(1.94−3.36i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.27−2.20i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.459−0.796i)T+(−11.5+19.9i)T2 |
| 29 | 1+4.32T+29T2 |
| 31 | 1+(3.12−5.40i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−0.769−1.33i)T+(−18.5+32.0i)T2 |
| 41 | 1−6.86T+41T2 |
| 43 | 1−12.1T+43T2 |
| 47 | 1+(4.71+8.16i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−4.91+8.50i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4.87−8.44i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2.21−3.83i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.44+2.51i)T+(−33.5−58.0i)T2 |
| 71 | 1+11.5T+71T2 |
| 73 | 1+(−6.53+11.3i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.0197+0.0342i)T+(−39.5+68.4i)T2 |
| 83 | 1+4.33T+83T2 |
| 89 | 1+(−1.83−3.17i)T+(−44.5+77.0i)T2 |
| 97 | 1+2.12T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.170179449738901997681382627988, −8.702607874232726275320193356403, −7.55027197568447934120668644605, −6.85059659585082968955318393594, −6.21030438996862032313036865841, −5.79795344942637166252553150682, −3.68797530300745632437919567222, −2.84615397799948648577204659570, −1.91301026191852800913886414668, −0.811604755713985767507097402966,
2.29749841157763536997257406704, 3.05366808498089254534224420411, 4.03198578502505398066173952959, 4.55588828469166065177034096996, 5.79237125715652970385064083256, 7.05301760271161118393187971848, 7.67284477789376010689184247971, 8.946244061510756272096621826503, 9.289405675155825974485130174959, 9.709692874828528798960046156062