L(s) = 1 | + (−0.00118 − 0.00205i)2-s + (1.54 − 2.68i)3-s + (0.999 − 1.73i)4-s + (0.565 + 0.979i)5-s − 0.00733·6-s + (−2.64 − 0.0383i)7-s − 0.00946·8-s + (−3.29 − 5.71i)9-s + (0.00133 − 0.00231i)10-s + (2.23 − 3.87i)11-s + (−3.09 − 5.36i)12-s + (0.00305 + 0.00546i)14-s + 3.50·15-s + (−1.99 − 3.46i)16-s + (−1.94 + 3.36i)17-s + (−0.00781 + 0.0135i)18-s + ⋯ |
L(s) = 1 | + (−0.000836 − 0.00144i)2-s + (0.894 − 1.54i)3-s + (0.499 − 0.866i)4-s + (0.252 + 0.438i)5-s − 0.00299·6-s + (−0.999 − 0.0144i)7-s − 0.00334·8-s + (−1.09 − 1.90i)9-s + (0.000423 − 0.000733i)10-s + (0.675 − 1.16i)11-s + (−0.894 − 1.54i)12-s + (0.000815 + 0.00146i)14-s + 0.905·15-s + (−0.499 − 0.866i)16-s + (−0.471 + 0.816i)17-s + (−0.00184 + 0.00318i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.902 + 0.431i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.902 + 0.431i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.174224692\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.174224692\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (2.64 + 0.0383i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.00118 + 0.00205i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.54 + 2.68i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.565 - 0.979i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.23 + 3.87i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.94 - 3.36i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.27 - 2.20i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.459 - 0.796i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4.32T + 29T^{2} \) |
| 31 | \( 1 + (3.12 - 5.40i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.769 - 1.33i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6.86T + 41T^{2} \) |
| 43 | \( 1 - 12.1T + 43T^{2} \) |
| 47 | \( 1 + (4.71 + 8.16i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.91 + 8.50i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.87 - 8.44i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.21 - 3.83i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.44 + 2.51i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 11.5T + 71T^{2} \) |
| 73 | \( 1 + (-6.53 + 11.3i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.0197 + 0.0342i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 4.33T + 83T^{2} \) |
| 89 | \( 1 + (-1.83 - 3.17i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 2.12T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.170179449738901997681382627988, −8.702607874232726275320193356403, −7.55027197568447934120668644605, −6.85059659585082968955318393594, −6.21030438996862032313036865841, −5.79795344942637166252553150682, −3.68797530300745632437919567222, −2.84615397799948648577204659570, −1.91301026191852800913886414668, −0.811604755713985767507097402966,
2.29749841157763536997257406704, 3.05366808498089254534224420411, 4.03198578502505398066173952959, 4.55588828469166065177034096996, 5.79237125715652970385064083256, 7.05301760271161118393187971848, 7.67284477789376010689184247971, 8.946244061510756272096621826503, 9.289405675155825974485130174959, 9.709692874828528798960046156062