L(s) = 1 | + (−0.545 − 0.945i)2-s + (−0.697 + 1.20i)3-s + (0.403 − 0.699i)4-s + (0.813 + 1.40i)5-s + 1.52·6-s + (2.51 + 0.817i)7-s − 3.06·8-s + (0.526 + 0.911i)9-s + (0.888 − 1.53i)10-s + (0.646 − 1.12i)11-s + (0.563 + 0.975i)12-s + (−0.600 − 2.82i)14-s − 2.26·15-s + (0.866 + 1.50i)16-s + (2.70 − 4.68i)17-s + (0.574 − 0.995i)18-s + ⋯ |
L(s) = 1 | + (−0.386 − 0.668i)2-s + (−0.402 + 0.697i)3-s + (0.201 − 0.349i)4-s + (0.363 + 0.629i)5-s + 0.622·6-s + (0.951 + 0.309i)7-s − 1.08·8-s + (0.175 + 0.303i)9-s + (0.280 − 0.486i)10-s + (0.195 − 0.337i)11-s + (0.162 + 0.281i)12-s + (−0.160 − 0.755i)14-s − 0.586·15-s + (0.216 + 0.375i)16-s + (0.656 − 1.13i)17-s + (0.135 − 0.234i)18-s + ⋯ |
Λ(s)=(=(1183s/2ΓC(s)L(s)(0.989−0.145i)Λ(2−s)
Λ(s)=(=(1183s/2ΓC(s+1/2)L(s)(0.989−0.145i)Λ(1−s)
Degree: |
2 |
Conductor: |
1183
= 7⋅132
|
Sign: |
0.989−0.145i
|
Analytic conductor: |
9.44630 |
Root analytic conductor: |
3.07348 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1183(508,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1183, ( :1/2), 0.989−0.145i)
|
Particular Values
L(1) |
≈ |
1.499990394 |
L(21) |
≈ |
1.499990394 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−2.51−0.817i)T |
| 13 | 1 |
good | 2 | 1+(0.545+0.945i)T+(−1+1.73i)T2 |
| 3 | 1+(0.697−1.20i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−0.813−1.40i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−0.646+1.12i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−2.70+4.68i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.755−1.30i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1.32−2.28i)T+(−11.5+19.9i)T2 |
| 29 | 1−5.81T+29T2 |
| 31 | 1+(3.64−6.30i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−3.47−6.02i)T+(−18.5+32.0i)T2 |
| 41 | 1+8.09T+41T2 |
| 43 | 1−11.1T+43T2 |
| 47 | 1+(3.58+6.21i)T+(−23.5+40.7i)T2 |
| 53 | 1+(2.33−4.04i)T+(−26.5−45.8i)T2 |
| 59 | 1+(0.386−0.670i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.37+7.57i)T+(−30.5+52.8i)T2 |
| 67 | 1+(3.18−5.52i)T+(−33.5−58.0i)T2 |
| 71 | 1−11.9T+71T2 |
| 73 | 1+(3.60−6.24i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−5.88−10.2i)T+(−39.5+68.4i)T2 |
| 83 | 1−8.42T+83T2 |
| 89 | 1+(−0.833−1.44i)T+(−44.5+77.0i)T2 |
| 97 | 1−12.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03107094629136001744456225814, −9.294303090096873402054408188280, −8.375066576898917722760102717780, −7.31062067112113098128613304037, −6.31994161506721318559623967870, −5.37993339973484056490471316796, −4.82099774790752135166678678067, −3.34645791456553755334384610974, −2.38550978657888213863865991480, −1.21960444227231288825978046579,
0.932335810757812296275792347703, 2.05090897808161313620828567569, 3.65436556821323127284734939426, 4.77065940932360376720580795879, 5.85076779960809742061798044951, 6.45454828655831768098757136480, 7.46360647993130181732000691002, 7.83100842311482537112418372902, 8.808189712712310022052337669856, 9.421243489426143895251855507725