L(s) = 1 | + (−0.686 + 0.686i)2-s + (−0.839 + 2.02i)3-s + 1.05i·4-s + (−2.58 − 1.07i)5-s + (−0.815 − 1.96i)6-s + (0.923 − 0.382i)7-s + (−2.09 − 2.09i)8-s + (−1.28 − 1.28i)9-s + (2.50 − 1.03i)10-s + (−0.577 − 1.39i)11-s + (−2.14 − 0.887i)12-s + 5.94i·13-s + (−0.371 + 0.897i)14-s + (4.33 − 4.33i)15-s + 0.769·16-s + (0.995 + 4.00i)17-s + ⋯ |
L(s) = 1 | + (−0.485 + 0.485i)2-s + (−0.484 + 1.17i)3-s + 0.528i·4-s + (−1.15 − 0.478i)5-s + (−0.332 − 0.803i)6-s + (0.349 − 0.144i)7-s + (−0.742 − 0.742i)8-s + (−0.427 − 0.427i)9-s + (0.793 − 0.328i)10-s + (−0.174 − 0.420i)11-s + (−0.618 − 0.256i)12-s + 1.64i·13-s + (−0.0993 + 0.239i)14-s + (1.12 − 1.12i)15-s + 0.192·16-s + (0.241 + 0.970i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0175600 + 0.481906i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0175600 + 0.481906i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.923 + 0.382i)T \) |
| 17 | \( 1 + (-0.995 - 4.00i)T \) |
good | 2 | \( 1 + (0.686 - 0.686i)T - 2iT^{2} \) |
| 3 | \( 1 + (0.839 - 2.02i)T + (-2.12 - 2.12i)T^{2} \) |
| 5 | \( 1 + (2.58 + 1.07i)T + (3.53 + 3.53i)T^{2} \) |
| 11 | \( 1 + (0.577 + 1.39i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 5.94iT - 13T^{2} \) |
| 19 | \( 1 + (3.51 - 3.51i)T - 19iT^{2} \) |
| 23 | \( 1 + (-0.520 - 1.25i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (-8.02 - 3.32i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-3.27 + 7.90i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-0.502 + 1.21i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-0.619 + 0.256i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-4.44 - 4.44i)T + 43iT^{2} \) |
| 47 | \( 1 - 2.88iT - 47T^{2} \) |
| 53 | \( 1 + (4.65 - 4.65i)T - 53iT^{2} \) |
| 59 | \( 1 + (7.19 + 7.19i)T + 59iT^{2} \) |
| 61 | \( 1 + (-4.53 + 1.87i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 8.44T + 67T^{2} \) |
| 71 | \( 1 + (1.81 - 4.39i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-9.28 - 3.84i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (1.67 + 4.04i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (1.63 - 1.63i)T - 83iT^{2} \) |
| 89 | \( 1 - 2.29iT - 89T^{2} \) |
| 97 | \( 1 + (10.1 + 4.19i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.31932512281350896541872704685, −12.68020021564325703979932553300, −11.76677713711589763017818336360, −10.95315767688581193390721448394, −9.647671180832921741149906557713, −8.557650843069904654575272223515, −7.80703236973440885859657900554, −6.30977552614211194971594052516, −4.47517971529466342257220614776, −3.87337481654624600381155893450,
0.65895760304589267125076538643, 2.71100876913990853648109853813, 5.04545104606198684338637212547, 6.49019178879242022372971942017, 7.55576698046980186516373068314, 8.495436486183096924949812439411, 10.16729226064607492231649349655, 11.04364802248768806610289227208, 11.89914128223276574815483464645, 12.58819291474586865529021349967