L(s) = 1 | + (−0.888 − 0.458i)3-s + (0.654 + 0.755i)4-s + (−1.41 − 1.00i)7-s + (0.580 + 0.814i)9-s + (−0.235 − 0.971i)12-s + (1.30 + 0.451i)13-s + (−0.142 + 0.989i)16-s + (1.56 − 1.23i)19-s + (0.793 + 1.53i)21-s + (0.327 − 0.945i)25-s + (−0.142 − 0.989i)27-s + (−0.164 − 1.72i)28-s + (1.21 + 0.782i)31-s + (−0.235 + 0.971i)36-s + (0.0135 − 0.284i)37-s + ⋯ |
L(s) = 1 | + (−0.888 − 0.458i)3-s + (0.654 + 0.755i)4-s + (−1.41 − 1.00i)7-s + (0.580 + 0.814i)9-s + (−0.235 − 0.971i)12-s + (1.30 + 0.451i)13-s + (−0.142 + 0.989i)16-s + (1.56 − 1.23i)19-s + (0.793 + 1.53i)21-s + (0.327 − 0.945i)25-s + (−0.142 − 0.989i)27-s + (−0.164 − 1.72i)28-s + (1.21 + 0.782i)31-s + (−0.235 + 0.971i)36-s + (0.0135 − 0.284i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1191 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 + 0.252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1191 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 + 0.252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8688213180\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8688213180\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.888 + 0.458i)T \) |
| 397 | \( 1 - T \) |
good | 2 | \( 1 + (-0.654 - 0.755i)T^{2} \) |
| 5 | \( 1 + (-0.327 + 0.945i)T^{2} \) |
| 7 | \( 1 + (1.41 + 1.00i)T + (0.327 + 0.945i)T^{2} \) |
| 11 | \( 1 + (0.888 - 0.458i)T^{2} \) |
| 13 | \( 1 + (-1.30 - 0.451i)T + (0.786 + 0.618i)T^{2} \) |
| 17 | \( 1 + (-0.654 + 0.755i)T^{2} \) |
| 19 | \( 1 + (-1.56 + 1.23i)T + (0.235 - 0.971i)T^{2} \) |
| 23 | \( 1 + (0.888 - 0.458i)T^{2} \) |
| 29 | \( 1 + (-0.981 + 0.189i)T^{2} \) |
| 31 | \( 1 + (-1.21 - 0.782i)T + (0.415 + 0.909i)T^{2} \) |
| 37 | \( 1 + (-0.0135 + 0.284i)T + (-0.995 - 0.0950i)T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.481 - 1.05i)T + (-0.654 - 0.755i)T^{2} \) |
| 47 | \( 1 + (-0.928 + 0.371i)T^{2} \) |
| 53 | \( 1 + (-0.959 - 0.281i)T^{2} \) |
| 59 | \( 1 + (0.580 - 0.814i)T^{2} \) |
| 61 | \( 1 + (-0.866 + 0.299i)T + (0.786 - 0.618i)T^{2} \) |
| 67 | \( 1 + (-0.0623 + 1.30i)T + (-0.995 - 0.0950i)T^{2} \) |
| 71 | \( 1 + (0.415 + 0.909i)T^{2} \) |
| 73 | \( 1 + (0.607 - 0.243i)T + (0.723 - 0.690i)T^{2} \) |
| 79 | \( 1 + (0.888 + 1.53i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 89 | \( 1 + (-0.786 + 0.618i)T^{2} \) |
| 97 | \( 1 + (-1.84 - 0.176i)T + (0.981 + 0.189i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15407474632182873442153282004, −9.148147795119970823069247158940, −8.039774714484138287928981066223, −7.18710670432471001022733031936, −6.60614778420291175192121471004, −6.17078204019566758103832637413, −4.73729559620682780091752606181, −3.67756013802685419183013239246, −2.81294989315667182481420627925, −1.09228639971093273880120074185,
1.22126886167096375928948228949, 2.91401707519636749804567624987, 3.74637560353183719153864808457, 5.37827609524487928206918779861, 5.74397485808447399655399796180, 6.37411449547932918048691980167, 7.18208311614282070475493922440, 8.545006185115562293995653377378, 9.600775008423479123331491120490, 9.908301192222054687255669444751