Properties

Label 2-12-1.1-c7-0-1
Degree $2$
Conductor $12$
Sign $-1$
Analytic cond. $3.74862$
Root an. cond. $1.93613$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s − 378·5-s − 832·7-s + 729·9-s − 2.48e3·11-s + 1.48e4·13-s + 1.02e4·15-s − 2.23e4·17-s − 1.63e4·19-s + 2.24e4·21-s − 1.15e5·23-s + 6.47e4·25-s − 1.96e4·27-s + 1.57e5·29-s − 1.64e4·31-s + 6.70e4·33-s + 3.14e5·35-s − 1.49e5·37-s − 4.01e5·39-s − 2.41e5·41-s − 4.43e5·43-s − 2.75e5·45-s + 9.22e5·47-s − 1.31e5·49-s + 6.02e5·51-s − 6.97e5·53-s + 9.38e5·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.35·5-s − 0.916·7-s + 1/3·9-s − 0.562·11-s + 1.87·13-s + 0.780·15-s − 1.10·17-s − 0.545·19-s + 0.529·21-s − 1.97·23-s + 0.828·25-s − 0.192·27-s + 1.19·29-s − 0.0992·31-s + 0.324·33-s + 1.23·35-s − 0.484·37-s − 1.08·39-s − 0.546·41-s − 0.850·43-s − 0.450·45-s + 1.29·47-s − 0.159·49-s + 0.635·51-s − 0.643·53-s + 0.760·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12\)    =    \(2^{2} \cdot 3\)
Sign: $-1$
Analytic conductor: \(3.74862\)
Root analytic conductor: \(1.93613\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 12,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{3} T \)
good5 \( 1 + 378 T + p^{7} T^{2} \)
7 \( 1 + 832 T + p^{7} T^{2} \)
11 \( 1 + 2484 T + p^{7} T^{2} \)
13 \( 1 - 14870 T + p^{7} T^{2} \)
17 \( 1 + 22302 T + p^{7} T^{2} \)
19 \( 1 + 16300 T + p^{7} T^{2} \)
23 \( 1 + 115128 T + p^{7} T^{2} \)
29 \( 1 - 157086 T + p^{7} T^{2} \)
31 \( 1 + 16456 T + p^{7} T^{2} \)
37 \( 1 + 149266 T + p^{7} T^{2} \)
41 \( 1 + 241110 T + p^{7} T^{2} \)
43 \( 1 + 443188 T + p^{7} T^{2} \)
47 \( 1 - 922752 T + p^{7} T^{2} \)
53 \( 1 + 697626 T + p^{7} T^{2} \)
59 \( 1 - 870156 T + p^{7} T^{2} \)
61 \( 1 - 2067062 T + p^{7} T^{2} \)
67 \( 1 + 1680748 T + p^{7} T^{2} \)
71 \( 1 + 1070280 T + p^{7} T^{2} \)
73 \( 1 + 2403334 T + p^{7} T^{2} \)
79 \( 1 - 2301512 T + p^{7} T^{2} \)
83 \( 1 - 4708692 T + p^{7} T^{2} \)
89 \( 1 - 4143690 T + p^{7} T^{2} \)
97 \( 1 + 1622974 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.03856653775611897044462968328, −16.04236693790318248664141314339, −15.72040965290009028364985978909, −13.33585711915779779560707592758, −11.91508904072488664816649049968, −10.60870359949416380395058553144, −8.347822757510313655311611468920, −6.41907305343413758947245046321, −3.92006500247607182459096140991, 0, 3.92006500247607182459096140991, 6.41907305343413758947245046321, 8.347822757510313655311611468920, 10.60870359949416380395058553144, 11.91508904072488664816649049968, 13.33585711915779779560707592758, 15.72040965290009028364985978909, 16.04236693790318248664141314339, 18.03856653775611897044462968328

Graph of the $Z$-function along the critical line