L(s) = 1 | + (1.34 − 0.450i)2-s − 3-s + (1.59 − 1.20i)4-s + (0.254 − 2.22i)5-s + (−1.34 + 0.450i)6-s + 2.64i·7-s + (1.59 − 2.33i)8-s + 9-s + (−0.659 − 3.09i)10-s + 1.51i·11-s + (−1.59 + 1.20i)12-s − 3.87·13-s + (1.18 + 3.54i)14-s + (−0.254 + 2.22i)15-s + (1.08 − 3.84i)16-s + 3.31i·17-s + ⋯ |
L(s) = 1 | + (0.947 − 0.318i)2-s − 0.577·3-s + (0.797 − 0.603i)4-s + (0.113 − 0.993i)5-s + (−0.547 + 0.183i)6-s + 0.998i·7-s + (0.563 − 0.825i)8-s + 0.333·9-s + (−0.208 − 0.978i)10-s + 0.456i·11-s + (−0.460 + 0.348i)12-s − 1.07·13-s + (0.317 + 0.946i)14-s + (−0.0656 + 0.573i)15-s + (0.271 − 0.962i)16-s + 0.803i·17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(0.756+0.654i)Λ(2−s)
Λ(s)=(=(120s/2ΓC(s+1/2)L(s)(0.756+0.654i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
0.756+0.654i
|
Analytic conductor: |
0.958204 |
Root analytic conductor: |
0.978879 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :1/2), 0.756+0.654i)
|
Particular Values
L(1) |
≈ |
1.40525−0.523259i |
L(21) |
≈ |
1.40525−0.523259i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.34+0.450i)T |
| 3 | 1+T |
| 5 | 1+(−0.254+2.22i)T |
good | 7 | 1−2.64iT−7T2 |
| 11 | 1−1.51iT−11T2 |
| 13 | 1+3.87T+13T2 |
| 17 | 1−3.31iT−17T2 |
| 19 | 1−7.08iT−19T2 |
| 23 | 1+4.82iT−23T2 |
| 29 | 1+2.18iT−29T2 |
| 31 | 1+7.36T+31T2 |
| 37 | 1−7.87T+37T2 |
| 41 | 1−8.72T+41T2 |
| 43 | 1+1.01T+43T2 |
| 47 | 1+7.08iT−47T2 |
| 53 | 1+4.50T+53T2 |
| 59 | 1+6.79iT−59T2 |
| 61 | 1−3.60iT−61T2 |
| 67 | 1−1.01T+67T2 |
| 71 | 1+6.72T+71T2 |
| 73 | 1+15.5iT−73T2 |
| 79 | 1−7.36T+79T2 |
| 83 | 1+7.74T+83T2 |
| 89 | 1+14.7T+89T2 |
| 97 | 1−11.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.85215749268182238244952741735, −12.47746165405455465672646929024, −11.76372014877420549778640051255, −10.38676535116238017890945237812, −9.387682569787316647057491080489, −7.81777905856824308553279539793, −6.15148969379611355540884927692, −5.33880860225500696184261446878, −4.22098229968495723923824090517, −2.04128664062871564010657097566,
2.87615994388096863389644470442, 4.39508971616457155186481528911, 5.69149156033938695983616953089, 7.05349848888652327567376920367, 7.41723458285377844873052520256, 9.637646177083581400572635359735, 11.02618866982096631940481939745, 11.32529500911265445738641507066, 12.76264528448803874740282446109, 13.70209765636108661839520119753