L(s) = 1 | + (1.34 − 0.450i)2-s − 3-s + (1.59 − 1.20i)4-s + (0.254 − 2.22i)5-s + (−1.34 + 0.450i)6-s + 2.64i·7-s + (1.59 − 2.33i)8-s + 9-s + (−0.659 − 3.09i)10-s + 1.51i·11-s + (−1.59 + 1.20i)12-s − 3.87·13-s + (1.18 + 3.54i)14-s + (−0.254 + 2.22i)15-s + (1.08 − 3.84i)16-s + 3.31i·17-s + ⋯ |
L(s) = 1 | + (0.947 − 0.318i)2-s − 0.577·3-s + (0.797 − 0.603i)4-s + (0.113 − 0.993i)5-s + (−0.547 + 0.183i)6-s + 0.998i·7-s + (0.563 − 0.825i)8-s + 0.333·9-s + (−0.208 − 0.978i)10-s + 0.456i·11-s + (−0.460 + 0.348i)12-s − 1.07·13-s + (0.317 + 0.946i)14-s + (−0.0656 + 0.573i)15-s + (0.271 − 0.962i)16-s + 0.803i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.756 + 0.654i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.756 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.40525 - 0.523259i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.40525 - 0.523259i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.34 + 0.450i)T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + (-0.254 + 2.22i)T \) |
good | 7 | \( 1 - 2.64iT - 7T^{2} \) |
| 11 | \( 1 - 1.51iT - 11T^{2} \) |
| 13 | \( 1 + 3.87T + 13T^{2} \) |
| 17 | \( 1 - 3.31iT - 17T^{2} \) |
| 19 | \( 1 - 7.08iT - 19T^{2} \) |
| 23 | \( 1 + 4.82iT - 23T^{2} \) |
| 29 | \( 1 + 2.18iT - 29T^{2} \) |
| 31 | \( 1 + 7.36T + 31T^{2} \) |
| 37 | \( 1 - 7.87T + 37T^{2} \) |
| 41 | \( 1 - 8.72T + 41T^{2} \) |
| 43 | \( 1 + 1.01T + 43T^{2} \) |
| 47 | \( 1 + 7.08iT - 47T^{2} \) |
| 53 | \( 1 + 4.50T + 53T^{2} \) |
| 59 | \( 1 + 6.79iT - 59T^{2} \) |
| 61 | \( 1 - 3.60iT - 61T^{2} \) |
| 67 | \( 1 - 1.01T + 67T^{2} \) |
| 71 | \( 1 + 6.72T + 71T^{2} \) |
| 73 | \( 1 + 15.5iT - 73T^{2} \) |
| 79 | \( 1 - 7.36T + 79T^{2} \) |
| 83 | \( 1 + 7.74T + 83T^{2} \) |
| 89 | \( 1 + 14.7T + 89T^{2} \) |
| 97 | \( 1 - 11.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.85215749268182238244952741735, −12.47746165405455465672646929024, −11.76372014877420549778640051255, −10.38676535116238017890945237812, −9.387682569787316647057491080489, −7.81777905856824308553279539793, −6.15148969379611355540884927692, −5.33880860225500696184261446878, −4.22098229968495723923824090517, −2.04128664062871564010657097566,
2.87615994388096863389644470442, 4.39508971616457155186481528911, 5.69149156033938695983616953089, 7.05349848888652327567376920367, 7.41723458285377844873052520256, 9.637646177083581400572635359735, 11.02618866982096631940481939745, 11.32529500911265445738641507066, 12.76264528448803874740282446109, 13.70209765636108661839520119753