L(s) = 1 | + (1.89 + 4.83i)3-s + (−8.68 − 7.04i)5-s + (−20.0 − 20.0i)7-s + (−19.8 + 18.3i)9-s − 46.6i·11-s + (−20.2 + 20.2i)13-s + (17.6 − 55.3i)15-s + (59.4 − 59.4i)17-s + 81.9i·19-s + (58.8 − 134. i)21-s + (−98.2 − 98.2i)23-s + (25.8 + 122. i)25-s + (−126. − 61.1i)27-s − 18.6·29-s − 278.·31-s + ⋯ |
L(s) = 1 | + (0.364 + 0.931i)3-s + (−0.776 − 0.629i)5-s + (−1.07 − 1.07i)7-s + (−0.733 + 0.679i)9-s − 1.27i·11-s + (−0.433 + 0.433i)13-s + (0.303 − 0.952i)15-s + (0.848 − 0.848i)17-s + 0.989i·19-s + (0.611 − 1.39i)21-s + (−0.890 − 0.890i)23-s + (0.206 + 0.978i)25-s + (−0.900 − 0.435i)27-s − 0.119·29-s − 1.61·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.514 + 0.857i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.514 + 0.857i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.279148 - 0.492711i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.279148 - 0.492711i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.89 - 4.83i)T \) |
| 5 | \( 1 + (8.68 + 7.04i)T \) |
good | 7 | \( 1 + (20.0 + 20.0i)T + 343iT^{2} \) |
| 11 | \( 1 + 46.6iT - 1.33e3T^{2} \) |
| 13 | \( 1 + (20.2 - 20.2i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + (-59.4 + 59.4i)T - 4.91e3iT^{2} \) |
| 19 | \( 1 - 81.9iT - 6.85e3T^{2} \) |
| 23 | \( 1 + (98.2 + 98.2i)T + 1.21e4iT^{2} \) |
| 29 | \( 1 + 18.6T + 2.43e4T^{2} \) |
| 31 | \( 1 + 278.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (81.9 + 81.9i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 211. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (-168. + 168. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + (-24.9 + 24.9i)T - 1.03e5iT^{2} \) |
| 53 | \( 1 + (-54.7 - 54.7i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 - 158.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 892.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (407. + 407. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 286. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (588. - 588. i)T - 3.89e5iT^{2} \) |
| 79 | \( 1 - 693. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (735. + 735. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 - 755.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (760. + 760. i)T + 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.68661014565850994704078945593, −11.51119443901289550227031774918, −10.42364970445023077209799525371, −9.528191057762947634107358335444, −8.451111268655364727766346337073, −7.34545932311140986409975478098, −5.64080693879029081583454343302, −4.12078189837982770078230481901, −3.34617403768294319892882250485, −0.27242399169493834737290162625,
2.31501779468854748290036924502, 3.53544682960389209331405551847, 5.71833837588931063526625267584, 6.93616187571430855995880258631, 7.71899680299683071876448862046, 9.018311643140293079122654197034, 10.08788023167173082771784977776, 11.66125122980018820718647652284, 12.42445194314424075055329020897, 13.00852160971514639590434839113