L(s) = 1 | + (1.89 + 4.83i)3-s + (−8.68 − 7.04i)5-s + (−20.0 − 20.0i)7-s + (−19.8 + 18.3i)9-s − 46.6i·11-s + (−20.2 + 20.2i)13-s + (17.6 − 55.3i)15-s + (59.4 − 59.4i)17-s + 81.9i·19-s + (58.8 − 134. i)21-s + (−98.2 − 98.2i)23-s + (25.8 + 122. i)25-s + (−126. − 61.1i)27-s − 18.6·29-s − 278.·31-s + ⋯ |
L(s) = 1 | + (0.364 + 0.931i)3-s + (−0.776 − 0.629i)5-s + (−1.07 − 1.07i)7-s + (−0.733 + 0.679i)9-s − 1.27i·11-s + (−0.433 + 0.433i)13-s + (0.303 − 0.952i)15-s + (0.848 − 0.848i)17-s + 0.989i·19-s + (0.611 − 1.39i)21-s + (−0.890 − 0.890i)23-s + (0.206 + 0.978i)25-s + (−0.900 − 0.435i)27-s − 0.119·29-s − 1.61·31-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(−0.514+0.857i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(−0.514+0.857i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
−0.514+0.857i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :3/2), −0.514+0.857i)
|
Particular Values
L(2) |
≈ |
0.279148−0.492711i |
L(21) |
≈ |
0.279148−0.492711i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.89−4.83i)T |
| 5 | 1+(8.68+7.04i)T |
good | 7 | 1+(20.0+20.0i)T+343iT2 |
| 11 | 1+46.6iT−1.33e3T2 |
| 13 | 1+(20.2−20.2i)T−2.19e3iT2 |
| 17 | 1+(−59.4+59.4i)T−4.91e3iT2 |
| 19 | 1−81.9iT−6.85e3T2 |
| 23 | 1+(98.2+98.2i)T+1.21e4iT2 |
| 29 | 1+18.6T+2.43e4T2 |
| 31 | 1+278.T+2.97e4T2 |
| 37 | 1+(81.9+81.9i)T+5.06e4iT2 |
| 41 | 1−211.iT−6.89e4T2 |
| 43 | 1+(−168.+168.i)T−7.95e4iT2 |
| 47 | 1+(−24.9+24.9i)T−1.03e5iT2 |
| 53 | 1+(−54.7−54.7i)T+1.48e5iT2 |
| 59 | 1−158.T+2.05e5T2 |
| 61 | 1−892.T+2.26e5T2 |
| 67 | 1+(407.+407.i)T+3.00e5iT2 |
| 71 | 1+286.iT−3.57e5T2 |
| 73 | 1+(588.−588.i)T−3.89e5iT2 |
| 79 | 1−693.iT−4.93e5T2 |
| 83 | 1+(735.+735.i)T+5.71e5iT2 |
| 89 | 1−755.T+7.04e5T2 |
| 97 | 1+(760.+760.i)T+9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.68661014565850994704078945593, −11.51119443901289550227031774918, −10.42364970445023077209799525371, −9.528191057762947634107358335444, −8.451111268655364727766346337073, −7.34545932311140986409975478098, −5.64080693879029081583454343302, −4.12078189837982770078230481901, −3.34617403768294319892882250485, −0.27242399169493834737290162625,
2.31501779468854748290036924502, 3.53544682960389209331405551847, 5.71833837588931063526625267584, 6.93616187571430855995880258631, 7.71899680299683071876448862046, 9.018311643140293079122654197034, 10.08788023167173082771784977776, 11.66125122980018820718647652284, 12.42445194314424075055329020897, 13.00852160971514639590434839113