L(s) = 1 | + (−2 − 2i)2-s + (−3.67 + 3.67i)3-s + 8i·4-s + (−3.32 + 10.6i)5-s + 14.6·6-s + (9.65 + 9.65i)7-s + (16 − 16i)8-s − 27i·9-s + (28 − 14.6i)10-s − 47.4·11-s + (−29.3 − 29.3i)12-s − 38.6i·14-s + (−26.9 − 51.4i)15-s − 64·16-s + (−54 + 54i)18-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + (−0.707 + 0.707i)3-s + i·4-s + (−0.297 + 0.954i)5-s + 0.999·6-s + (0.521 + 0.521i)7-s + (0.707 − 0.707i)8-s − i·9-s + (0.885 − 0.464i)10-s − 1.30·11-s + (−0.707 − 0.707i)12-s − 0.736i·14-s + (−0.464 − 0.885i)15-s − 16-s + (−0.707 + 0.707i)18-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(−0.968+0.248i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(−0.968+0.248i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
−0.968+0.248i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(77,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :3/2), −0.968+0.248i)
|
Particular Values
L(2) |
≈ |
0.0130544−0.103249i |
L(21) |
≈ |
0.0130544−0.103249i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2+2i)T |
| 3 | 1+(3.67−3.67i)T |
| 5 | 1+(3.32−10.6i)T |
good | 7 | 1+(−9.65−9.65i)T+343iT2 |
| 11 | 1+47.4T+1.33e3T2 |
| 13 | 1+2.19e3iT2 |
| 17 | 1−4.91e3iT2 |
| 19 | 1+6.85e3T2 |
| 23 | 1+1.21e4iT2 |
| 29 | 1+312.iT−2.43e4T2 |
| 31 | 1+338.T+2.97e4T2 |
| 37 | 1−5.06e4iT2 |
| 41 | 1−6.89e4T2 |
| 43 | 1+7.95e4iT2 |
| 47 | 1−1.03e5iT2 |
| 53 | 1+(−360.+360.i)T−1.48e5iT2 |
| 59 | 1−899.iT−2.05e5T2 |
| 61 | 1−2.26e5T2 |
| 67 | 1−3.00e5iT2 |
| 71 | 1−3.57e5T2 |
| 73 | 1+(763.−763.i)T−3.89e5iT2 |
| 79 | 1−308.iT−4.93e5T2 |
| 83 | 1+(868−868i)T−5.71e5iT2 |
| 89 | 1+7.04e5T2 |
| 97 | 1+(−1.19e3−1.19e3i)T+9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.27015952761502944922078242428, −12.02205241839574485141460700410, −11.27396639348325094990504497311, −10.54873204946661654963510827758, −9.705719910608478520077198908861, −8.339898851765800389980323611132, −7.20607596472202746268658492992, −5.58504697290502058351313414914, −4.00212190583182385064155963610, −2.52883773183139141570356207795,
0.07587764675362501251942622142, 1.54433763187092646403498301697, 4.84605251233577030099586435630, 5.60237259640998413285340567490, 7.21011272407411837351803454659, 7.86301827116210954863857899850, 8.922619634932462451964436626998, 10.46903385830415368907839869549, 11.17485898637323665034612810432, 12.55522510246796760262041183975