L(s) = 1 | + (−0.707 − 0.707i)2-s + (−0.707 − 0.707i)3-s + 1.00i·4-s + 1.00i·6-s + (0.707 − 0.707i)8-s + 1.00i·9-s + (0.707 − 0.707i)12-s − 1.00·16-s + 1.41i·17-s + (0.707 − 0.707i)18-s + (1 − i)19-s + 1.41·23-s − 1.00·24-s + (0.707 − 0.707i)27-s + (0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + (−0.707 − 0.707i)3-s + 1.00i·4-s + 1.00i·6-s + (0.707 − 0.707i)8-s + 1.00i·9-s + (0.707 − 0.707i)12-s − 1.00·16-s + 1.41i·17-s + (0.707 − 0.707i)18-s + (1 − i)19-s + 1.41·23-s − 1.00·24-s + (0.707 − 0.707i)27-s + (0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5999395315\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5999395315\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - T^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 - 1.41iT - T^{2} \) |
| 19 | \( 1 + (-1 + i)T - iT^{2} \) |
| 23 | \( 1 - 1.41T + T^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + 1.41iT - T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (-1 + i)T - iT^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + 2T + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.963946576342807016962725960992, −8.936598007806978755845485294165, −8.266593806846385204500880192796, −7.29559396696789634265742088854, −6.78944905782335106903409069493, −5.61352216969456553572159878063, −4.61261543005880542674168139020, −3.35123632032944131225093329490, −2.18684375825663080811168665870, −1.01483283962229245839022808768,
1.06212636651580308915662667725, 2.97651785823872670969237959653, 4.37948971945085264098297565671, 5.25136674907686538888713125825, 5.82519521958052877072932764571, 6.90586631075897811206785935729, 7.47408814092031433367239950892, 8.637355040272343701305236274743, 9.391011093691416634401205100560, 9.891352024586910173243018523983