L(s) = 1 | + (−0.707 − 0.707i)3-s + (1.41 − 1.41i)7-s + 1.00i·9-s − 3.46i·11-s + (−2.44 + 2.44i)13-s + (−4.89 − 4.89i)17-s + 3.46·19-s − 2.00·21-s + (0.707 − 0.707i)27-s + 3.46i·31-s + (−2.44 + 2.44i)33-s + (−7.34 − 7.34i)37-s + 3.46·39-s + 6·41-s + (−5.65 − 5.65i)43-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (0.534 − 0.534i)7-s + 0.333i·9-s − 1.04i·11-s + (−0.679 + 0.679i)13-s + (−1.18 − 1.18i)17-s + 0.794·19-s − 0.436·21-s + (0.136 − 0.136i)27-s + 0.622i·31-s + (−0.426 + 0.426i)33-s + (−1.20 − 1.20i)37-s + 0.554·39-s + 0.937·41-s + (−0.862 − 0.862i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.727 + 0.685i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.727 + 0.685i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9262431871\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9262431871\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-1.41 + 1.41i)T - 7iT^{2} \) |
| 11 | \( 1 + 3.46iT - 11T^{2} \) |
| 13 | \( 1 + (2.44 - 2.44i)T - 13iT^{2} \) |
| 17 | \( 1 + (4.89 + 4.89i)T + 17iT^{2} \) |
| 19 | \( 1 - 3.46T + 19T^{2} \) |
| 23 | \( 1 + 23iT^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (7.34 + 7.34i)T + 37iT^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + (5.65 + 5.65i)T + 43iT^{2} \) |
| 47 | \( 1 + (-8.48 + 8.48i)T - 47iT^{2} \) |
| 53 | \( 1 + (4.89 - 4.89i)T - 53iT^{2} \) |
| 59 | \( 1 + 10.3T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + (-2.82 + 2.82i)T - 67iT^{2} \) |
| 71 | \( 1 + 13.8iT - 71T^{2} \) |
| 73 | \( 1 + (4.89 - 4.89i)T - 73iT^{2} \) |
| 79 | \( 1 + 3.46T + 79T^{2} \) |
| 83 | \( 1 + (8.48 + 8.48i)T + 83iT^{2} \) |
| 89 | \( 1 + 18iT - 89T^{2} \) |
| 97 | \( 1 + (4.89 + 4.89i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.263726537417369112223616260025, −8.738491671608526474419618571363, −7.48465154255873382868996972914, −7.15839291211617450550139993856, −6.10869729736725106290472728437, −5.14382037364768310215446461807, −4.39490155929595856578136143513, −3.09730663063664735229148276110, −1.83861850757529903356156927381, −0.40923233487666378726184009493,
1.67025315090805819291695137102, 2.84703329607166560441864884220, 4.22718274053883988901120723633, 4.89990040920548701930635396857, 5.74626559798255167597554473913, 6.68807515242575720002280359900, 7.64496649553188476611820605897, 8.436535951711625198166262166877, 9.380997669047364522937946207886, 10.03604073099418675110808683093