Properties

Label 2-1200-20.7-c1-0-10
Degree $2$
Conductor $1200$
Sign $0.727 - 0.685i$
Analytic cond. $9.58204$
Root an. cond. $3.09548$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)3-s + (−1.41 + 1.41i)7-s + 1.00i·9-s − 3.46i·11-s + (2.44 − 2.44i)13-s + (4.89 + 4.89i)17-s + 3.46·19-s − 2.00·21-s + (−0.707 + 0.707i)27-s + 3.46i·31-s + (2.44 − 2.44i)33-s + (7.34 + 7.34i)37-s + 3.46·39-s + 6·41-s + (5.65 + 5.65i)43-s + ⋯
L(s)  = 1  + (0.408 + 0.408i)3-s + (−0.534 + 0.534i)7-s + 0.333i·9-s − 1.04i·11-s + (0.679 − 0.679i)13-s + (1.18 + 1.18i)17-s + 0.794·19-s − 0.436·21-s + (−0.136 + 0.136i)27-s + 0.622i·31-s + (0.426 − 0.426i)33-s + (1.20 + 1.20i)37-s + 0.554·39-s + 0.937·41-s + (0.862 + 0.862i)43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.727 - 0.685i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.727 - 0.685i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1200\)    =    \(2^{4} \cdot 3 \cdot 5^{2}\)
Sign: $0.727 - 0.685i$
Analytic conductor: \(9.58204\)
Root analytic conductor: \(3.09548\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1200} (607, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1200,\ (\ :1/2),\ 0.727 - 0.685i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.889080143\)
\(L(\frac12)\) \(\approx\) \(1.889080143\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.707 - 0.707i)T \)
5 \( 1 \)
good7 \( 1 + (1.41 - 1.41i)T - 7iT^{2} \)
11 \( 1 + 3.46iT - 11T^{2} \)
13 \( 1 + (-2.44 + 2.44i)T - 13iT^{2} \)
17 \( 1 + (-4.89 - 4.89i)T + 17iT^{2} \)
19 \( 1 - 3.46T + 19T^{2} \)
23 \( 1 + 23iT^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 - 3.46iT - 31T^{2} \)
37 \( 1 + (-7.34 - 7.34i)T + 37iT^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + (-5.65 - 5.65i)T + 43iT^{2} \)
47 \( 1 + (8.48 - 8.48i)T - 47iT^{2} \)
53 \( 1 + (-4.89 + 4.89i)T - 53iT^{2} \)
59 \( 1 + 10.3T + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 + (2.82 - 2.82i)T - 67iT^{2} \)
71 \( 1 + 13.8iT - 71T^{2} \)
73 \( 1 + (-4.89 + 4.89i)T - 73iT^{2} \)
79 \( 1 + 3.46T + 79T^{2} \)
83 \( 1 + (-8.48 - 8.48i)T + 83iT^{2} \)
89 \( 1 + 18iT - 89T^{2} \)
97 \( 1 + (-4.89 - 4.89i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.747169147930492172120726334299, −9.088763900976604461404215491370, −8.179051146147065467889655862919, −7.73281993397370421230837979792, −6.07641604116680306884393141374, −5.94154487241207057301115374301, −4.65335910124574655391620957206, −3.33848880165903241309318549616, −3.04264153328159334444362612096, −1.23737502707919091326747059976, 0.944169705693721882969642161571, 2.30404974845465235038269367459, 3.42775952544298999712111221539, 4.30539828226934947658681364044, 5.47304726268423616007726698241, 6.47734418536173893711816380064, 7.39414629789997265404512305403, 7.67307863968289822925059162194, 9.045207028646577489341263816129, 9.541660336376451040639366778238

Graph of the $Z$-function along the critical line