L(s) = 1 | + (0.707 + 0.707i)3-s + (−1.41 + 1.41i)7-s + 1.00i·9-s − 3.46i·11-s + (2.44 − 2.44i)13-s + (4.89 + 4.89i)17-s + 3.46·19-s − 2.00·21-s + (−0.707 + 0.707i)27-s + 3.46i·31-s + (2.44 − 2.44i)33-s + (7.34 + 7.34i)37-s + 3.46·39-s + 6·41-s + (5.65 + 5.65i)43-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (−0.534 + 0.534i)7-s + 0.333i·9-s − 1.04i·11-s + (0.679 − 0.679i)13-s + (1.18 + 1.18i)17-s + 0.794·19-s − 0.436·21-s + (−0.136 + 0.136i)27-s + 0.622i·31-s + (0.426 − 0.426i)33-s + (1.20 + 1.20i)37-s + 0.554·39-s + 0.937·41-s + (0.862 + 0.862i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.727 - 0.685i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.727 - 0.685i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.889080143\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.889080143\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (1.41 - 1.41i)T - 7iT^{2} \) |
| 11 | \( 1 + 3.46iT - 11T^{2} \) |
| 13 | \( 1 + (-2.44 + 2.44i)T - 13iT^{2} \) |
| 17 | \( 1 + (-4.89 - 4.89i)T + 17iT^{2} \) |
| 19 | \( 1 - 3.46T + 19T^{2} \) |
| 23 | \( 1 + 23iT^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (-7.34 - 7.34i)T + 37iT^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + (-5.65 - 5.65i)T + 43iT^{2} \) |
| 47 | \( 1 + (8.48 - 8.48i)T - 47iT^{2} \) |
| 53 | \( 1 + (-4.89 + 4.89i)T - 53iT^{2} \) |
| 59 | \( 1 + 10.3T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + (2.82 - 2.82i)T - 67iT^{2} \) |
| 71 | \( 1 + 13.8iT - 71T^{2} \) |
| 73 | \( 1 + (-4.89 + 4.89i)T - 73iT^{2} \) |
| 79 | \( 1 + 3.46T + 79T^{2} \) |
| 83 | \( 1 + (-8.48 - 8.48i)T + 83iT^{2} \) |
| 89 | \( 1 + 18iT - 89T^{2} \) |
| 97 | \( 1 + (-4.89 - 4.89i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.747169147930492172120726334299, −9.088763900976604461404215491370, −8.179051146147065467889655862919, −7.73281993397370421230837979792, −6.07641604116680306884393141374, −5.94154487241207057301115374301, −4.65335910124574655391620957206, −3.33848880165903241309318549616, −3.04264153328159334444362612096, −1.23737502707919091326747059976,
0.944169705693721882969642161571, 2.30404974845465235038269367459, 3.42775952544298999712111221539, 4.30539828226934947658681364044, 5.47304726268423616007726698241, 6.47734418536173893711816380064, 7.39414629789997265404512305403, 7.67307863968289822925059162194, 9.045207028646577489341263816129, 9.541660336376451040639366778238