L(s) = 1 | + (−0.592 − 0.430i)2-s + (1.83 − 5.63i)3-s + (−2.30 − 7.09i)4-s + (10.4 − 7.55i)5-s + (−3.51 + 2.55i)6-s + (−5.23 − 16.0i)7-s + (−3.49 + 10.7i)8-s + (−6.58 − 4.78i)9-s − 9.41·10-s − 44.2·12-s + (60.3 + 43.8i)13-s + (−3.82 + 11.7i)14-s + (−23.5 − 72.4i)15-s + (−41.6 + 30.2i)16-s + (−66.9 + 48.6i)17-s + (1.84 + 5.66i)18-s + ⋯ |
L(s) = 1 | + (−0.209 − 0.152i)2-s + (0.352 − 1.08i)3-s + (−0.288 − 0.887i)4-s + (0.930 − 0.675i)5-s + (−0.238 + 0.173i)6-s + (−0.282 − 0.869i)7-s + (−0.154 + 0.475i)8-s + (−0.244 − 0.177i)9-s − 0.297·10-s − 1.06·12-s + (1.28 + 0.936i)13-s + (−0.0731 + 0.224i)14-s + (−0.405 − 1.24i)15-s + (−0.650 + 0.472i)16-s + (−0.955 + 0.694i)17-s + (0.0241 + 0.0742i)18-s + ⋯ |
Λ(s)=(=(121s/2ΓC(s)L(s)(−0.834+0.551i)Λ(4−s)
Λ(s)=(=(121s/2ΓC(s+3/2)L(s)(−0.834+0.551i)Λ(1−s)
Degree: |
2 |
Conductor: |
121
= 112
|
Sign: |
−0.834+0.551i
|
Analytic conductor: |
7.13923 |
Root analytic conductor: |
2.67193 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ121(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 121, ( :3/2), −0.834+0.551i)
|
Particular Values
L(2) |
≈ |
0.483353−1.60699i |
L(21) |
≈ |
0.483353−1.60699i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
good | 2 | 1+(0.592+0.430i)T+(2.47+7.60i)T2 |
| 3 | 1+(−1.83+5.63i)T+(−21.8−15.8i)T2 |
| 5 | 1+(−10.4+7.55i)T+(38.6−118.i)T2 |
| 7 | 1+(5.23+16.0i)T+(−277.+201.i)T2 |
| 13 | 1+(−60.3−43.8i)T+(678.+2.08e3i)T2 |
| 17 | 1+(66.9−48.6i)T+(1.51e3−4.67e3i)T2 |
| 19 | 1+(−20.9+64.5i)T+(−5.54e3−4.03e3i)T2 |
| 23 | 1−13.3T+1.21e4T2 |
| 29 | 1+(52.2+160.i)T+(−1.97e4+1.43e4i)T2 |
| 31 | 1+(−52.9−38.4i)T+(9.20e3+2.83e4i)T2 |
| 37 | 1+(−12.6−38.8i)T+(−4.09e4+2.97e4i)T2 |
| 41 | 1+(84.9−261.i)T+(−5.57e4−4.05e4i)T2 |
| 43 | 1−2.28T+7.95e4T2 |
| 47 | 1+(−22.2+68.3i)T+(−8.39e4−6.10e4i)T2 |
| 53 | 1+(−120.−87.5i)T+(4.60e4+1.41e5i)T2 |
| 59 | 1+(−168.−518.i)T+(−1.66e5+1.20e5i)T2 |
| 61 | 1+(−81.9+59.5i)T+(7.01e4−2.15e5i)T2 |
| 67 | 1−411.T+3.00e5T2 |
| 71 | 1+(−380.+276.i)T+(1.10e5−3.40e5i)T2 |
| 73 | 1+(188.+580.i)T+(−3.14e5+2.28e5i)T2 |
| 79 | 1+(791.+574.i)T+(1.52e5+4.68e5i)T2 |
| 83 | 1+(−21.1+15.3i)T+(1.76e5−5.43e5i)T2 |
| 89 | 1+352.T+7.04e5T2 |
| 97 | 1+(685.+498.i)T+(2.82e5+8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.20520410898496871164809107532, −11.45303829981682244267681486963, −10.36277917863077648376552686221, −9.284167785916455235313035355700, −8.460140286357567836371956304483, −6.85468317717693168932049733576, −6.03035228966966989689283990652, −4.43728675649401937206551137323, −1.94489691779320467634250774902, −0.999611715066848980111535947281,
2.75605264707211758283636070842, 3.79182394136474110386627490525, 5.47732434910503826566500086936, 6.76913959756156312412051395360, 8.412448038661552997443215413524, 9.178576078287646733775331455266, 10.03269454334212561663037635800, 11.08486631489157650468041850409, 12.52060555195562115226039953699, 13.45643102500135804239462987181