Properties

Label 2-1216-1.1-c1-0-19
Degree $2$
Conductor $1216$
Sign $1$
Analytic cond. $9.70980$
Root an. cond. $3.11605$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 7-s + 6·9-s + 2·11-s + 13-s + 3·17-s − 19-s + 3·21-s − 3·23-s − 5·25-s + 9·27-s − 3·29-s − 8·31-s + 6·33-s + 10·37-s + 3·39-s − 12·41-s + 8·43-s + 8·47-s − 6·49-s + 9·51-s + 9·53-s − 3·57-s − 5·59-s − 10·61-s + 6·63-s + 7·67-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.377·7-s + 2·9-s + 0.603·11-s + 0.277·13-s + 0.727·17-s − 0.229·19-s + 0.654·21-s − 0.625·23-s − 25-s + 1.73·27-s − 0.557·29-s − 1.43·31-s + 1.04·33-s + 1.64·37-s + 0.480·39-s − 1.87·41-s + 1.21·43-s + 1.16·47-s − 6/7·49-s + 1.26·51-s + 1.23·53-s − 0.397·57-s − 0.650·59-s − 1.28·61-s + 0.755·63-s + 0.855·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $1$
Analytic conductor: \(9.70980\)
Root analytic conductor: \(3.11605\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1216,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.259109801\)
\(L(\frac12)\) \(\approx\) \(3.259109801\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 5 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 7 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 - T + p T^{2} \)
79 \( 1 - 14 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.415861681681162579943387548290, −9.027914182722105856770690690230, −7.943968172182858592403142779428, −7.74236222044461134007095453218, −6.60845811420238685670203067170, −5.46776906443032883183491997236, −4.08931083553499496867238827018, −3.63803508541238097399374767207, −2.43573806798025905726670590752, −1.52291178817025335850558392010, 1.52291178817025335850558392010, 2.43573806798025905726670590752, 3.63803508541238097399374767207, 4.08931083553499496867238827018, 5.46776906443032883183491997236, 6.60845811420238685670203067170, 7.74236222044461134007095453218, 7.943968172182858592403142779428, 9.027914182722105856770690690230, 9.415861681681162579943387548290

Graph of the $Z$-function along the critical line