L(s) = 1 | + (−0.982 − 1.70i)3-s + (0.349 + 0.605i)5-s + 3.80i·7-s + (−0.430 + 0.744i)9-s + 2.16i·11-s + (−1.16 − 0.672i)13-s + (0.686 − 1.18i)15-s + (−1.89 − 3.28i)17-s + (−1.62 + 4.04i)19-s + (6.46 − 3.73i)21-s + (−4.89 − 2.82i)23-s + (2.25 − 3.90i)25-s − 4.20·27-s + (−8.65 − 4.99i)29-s − 7.76·31-s + ⋯ |
L(s) = 1 | + (−0.567 − 0.982i)3-s + (0.156 + 0.270i)5-s + 1.43i·7-s + (−0.143 + 0.248i)9-s + 0.653i·11-s + (−0.323 − 0.186i)13-s + (0.177 − 0.307i)15-s + (−0.459 − 0.796i)17-s + (−0.372 + 0.928i)19-s + (1.41 − 0.814i)21-s + (−1.01 − 0.588i)23-s + (0.451 − 0.781i)25-s − 0.809·27-s + (−1.60 − 0.927i)29-s − 1.39·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.887 - 0.461i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.887 - 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1052258449\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1052258449\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (1.62 - 4.04i)T \) |
good | 3 | \( 1 + (0.982 + 1.70i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.349 - 0.605i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 3.80iT - 7T^{2} \) |
| 11 | \( 1 - 2.16iT - 11T^{2} \) |
| 13 | \( 1 + (1.16 + 0.672i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.89 + 3.28i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (4.89 + 2.82i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (8.65 + 4.99i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 7.76T + 31T^{2} \) |
| 37 | \( 1 - 1.31iT - 37T^{2} \) |
| 41 | \( 1 + (7.58 - 4.37i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.35 + 3.08i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.06 - 1.18i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.41 - 3.12i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.28 + 5.68i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.951 + 1.64i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.69 - 4.66i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.60 - 4.51i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.86 - 8.41i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.38 + 5.86i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 1.55iT - 83T^{2} \) |
| 89 | \( 1 + (1.43 + 0.827i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (9.10 - 5.25i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.967466987150960946165520191829, −9.308547908806763187052724063551, −8.346007894921600960307479326803, −7.49978211718722296178137038809, −6.69984287574709982469079500159, −5.93877142200240207183221045396, −5.34685217603021628380872250041, −4.04471717670539353682987546234, −2.48936096549231272333840592322, −1.87382408696336744318250762705,
0.04518693116869570399933857598, 1.73235003456435870438658007187, 3.60683015683843628922442457018, 4.09429918590598826620027157448, 5.07876236288811353795206020816, 5.78756404495192781481443000575, 6.97880678979906189343923337372, 7.60456931128306253457154587549, 8.825129557172126297379713103703, 9.474494470642116925182347578906