Properties

Label 2-1216-76.31-c1-0-0
Degree 22
Conductor 12161216
Sign 0.8870.461i-0.887 - 0.461i
Analytic cond. 9.709809.70980
Root an. cond. 3.116053.11605
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.982 − 1.70i)3-s + (0.349 + 0.605i)5-s + 3.80i·7-s + (−0.430 + 0.744i)9-s + 2.16i·11-s + (−1.16 − 0.672i)13-s + (0.686 − 1.18i)15-s + (−1.89 − 3.28i)17-s + (−1.62 + 4.04i)19-s + (6.46 − 3.73i)21-s + (−4.89 − 2.82i)23-s + (2.25 − 3.90i)25-s − 4.20·27-s + (−8.65 − 4.99i)29-s − 7.76·31-s + ⋯
L(s)  = 1  + (−0.567 − 0.982i)3-s + (0.156 + 0.270i)5-s + 1.43i·7-s + (−0.143 + 0.248i)9-s + 0.653i·11-s + (−0.323 − 0.186i)13-s + (0.177 − 0.307i)15-s + (−0.459 − 0.796i)17-s + (−0.372 + 0.928i)19-s + (1.41 − 0.814i)21-s + (−1.01 − 0.588i)23-s + (0.451 − 0.781i)25-s − 0.809·27-s + (−1.60 − 0.927i)29-s − 1.39·31-s + ⋯

Functional equation

Λ(s)=(1216s/2ΓC(s)L(s)=((0.8870.461i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.887 - 0.461i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1216s/2ΓC(s+1/2)L(s)=((0.8870.461i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.887 - 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 12161216    =    26192^{6} \cdot 19
Sign: 0.8870.461i-0.887 - 0.461i
Analytic conductor: 9.709809.70980
Root analytic conductor: 3.116053.11605
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1216(639,)\chi_{1216} (639, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1216, ( :1/2), 0.8870.461i)(2,\ 1216,\ (\ :1/2),\ -0.887 - 0.461i)

Particular Values

L(1)L(1) \approx 0.10522584490.1052258449
L(12)L(\frac12) \approx 0.10522584490.1052258449
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
19 1+(1.624.04i)T 1 + (1.62 - 4.04i)T
good3 1+(0.982+1.70i)T+(1.5+2.59i)T2 1 + (0.982 + 1.70i)T + (-1.5 + 2.59i)T^{2}
5 1+(0.3490.605i)T+(2.5+4.33i)T2 1 + (-0.349 - 0.605i)T + (-2.5 + 4.33i)T^{2}
7 13.80iT7T2 1 - 3.80iT - 7T^{2}
11 12.16iT11T2 1 - 2.16iT - 11T^{2}
13 1+(1.16+0.672i)T+(6.5+11.2i)T2 1 + (1.16 + 0.672i)T + (6.5 + 11.2i)T^{2}
17 1+(1.89+3.28i)T+(8.5+14.7i)T2 1 + (1.89 + 3.28i)T + (-8.5 + 14.7i)T^{2}
23 1+(4.89+2.82i)T+(11.5+19.9i)T2 1 + (4.89 + 2.82i)T + (11.5 + 19.9i)T^{2}
29 1+(8.65+4.99i)T+(14.5+25.1i)T2 1 + (8.65 + 4.99i)T + (14.5 + 25.1i)T^{2}
31 1+7.76T+31T2 1 + 7.76T + 31T^{2}
37 11.31iT37T2 1 - 1.31iT - 37T^{2}
41 1+(7.584.37i)T+(20.535.5i)T2 1 + (7.58 - 4.37i)T + (20.5 - 35.5i)T^{2}
43 1+(5.35+3.08i)T+(21.537.2i)T2 1 + (-5.35 + 3.08i)T + (21.5 - 37.2i)T^{2}
47 1+(2.061.18i)T+(23.5+40.7i)T2 1 + (-2.06 - 1.18i)T + (23.5 + 40.7i)T^{2}
53 1+(5.413.12i)T+(26.5+45.8i)T2 1 + (-5.41 - 3.12i)T + (26.5 + 45.8i)T^{2}
59 1+(3.28+5.68i)T+(29.5+51.0i)T2 1 + (3.28 + 5.68i)T + (-29.5 + 51.0i)T^{2}
61 1+(0.951+1.64i)T+(30.552.8i)T2 1 + (-0.951 + 1.64i)T + (-30.5 - 52.8i)T^{2}
67 1+(2.694.66i)T+(33.558.0i)T2 1 + (2.69 - 4.66i)T + (-33.5 - 58.0i)T^{2}
71 1+(2.604.51i)T+(35.5+61.4i)T2 1 + (-2.60 - 4.51i)T + (-35.5 + 61.4i)T^{2}
73 1+(4.868.41i)T+(36.5+63.2i)T2 1 + (-4.86 - 8.41i)T + (-36.5 + 63.2i)T^{2}
79 1+(3.38+5.86i)T+(39.5+68.4i)T2 1 + (3.38 + 5.86i)T + (-39.5 + 68.4i)T^{2}
83 11.55iT83T2 1 - 1.55iT - 83T^{2}
89 1+(1.43+0.827i)T+(44.5+77.0i)T2 1 + (1.43 + 0.827i)T + (44.5 + 77.0i)T^{2}
97 1+(9.105.25i)T+(48.584.0i)T2 1 + (9.10 - 5.25i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.967466987150960946165520191829, −9.308547908806763187052724063551, −8.346007894921600960307479326803, −7.49978211718722296178137038809, −6.69984287574709982469079500159, −5.93877142200240207183221045396, −5.34685217603021628380872250041, −4.04471717670539353682987546234, −2.48936096549231272333840592322, −1.87382408696336744318250762705, 0.04518693116869570399933857598, 1.73235003456435870438658007187, 3.60683015683843628922442457018, 4.09429918590598826620027157448, 5.07876236288811353795206020816, 5.78756404495192781481443000575, 6.97880678979906189343923337372, 7.60456931128306253457154587549, 8.825129557172126297379713103703, 9.474494470642116925182347578906

Graph of the ZZ-function along the critical line