L(s) = 1 | + (0.305 + 0.528i)3-s + (−1.59 − 2.75i)5-s + 2.36i·7-s + (1.31 − 2.27i)9-s + 5.46i·11-s + (2.31 + 1.33i)13-s + (0.971 − 1.68i)15-s + (−0.552 − 0.957i)17-s + (−1.37 − 4.13i)19-s + (−1.24 + 0.720i)21-s + (2.46 + 1.42i)23-s + (−2.57 + 4.46i)25-s + 3.43·27-s + (5.63 + 3.25i)29-s + 1.01·31-s + ⋯ |
L(s) = 1 | + (0.176 + 0.305i)3-s + (−0.712 − 1.23i)5-s + 0.893i·7-s + (0.437 − 0.758i)9-s + 1.64i·11-s + (0.643 + 0.371i)13-s + (0.250 − 0.434i)15-s + (−0.134 − 0.232i)17-s + (−0.316 − 0.948i)19-s + (−0.272 + 0.157i)21-s + (0.513 + 0.296i)23-s + (−0.514 + 0.892i)25-s + 0.660·27-s + (1.04 + 0.604i)29-s + 0.182·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.974 - 0.222i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.974 - 0.222i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.613227637\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.613227637\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (1.37 + 4.13i)T \) |
good | 3 | \( 1 + (-0.305 - 0.528i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.59 + 2.75i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 2.36iT - 7T^{2} \) |
| 11 | \( 1 - 5.46iT - 11T^{2} \) |
| 13 | \( 1 + (-2.31 - 1.33i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.552 + 0.957i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-2.46 - 1.42i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.63 - 3.25i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 1.01T + 31T^{2} \) |
| 37 | \( 1 - 0.450iT - 37T^{2} \) |
| 41 | \( 1 + (-0.336 + 0.194i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.96 + 2.86i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.91 - 1.68i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.53 - 2.03i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.82 - 11.8i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.77 + 11.7i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.27 + 7.39i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.07 - 1.86i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.91 - 6.78i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.57 + 9.65i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 4.14iT - 83T^{2} \) |
| 89 | \( 1 + (-4.19 - 2.41i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.641 - 0.370i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.406494048585345217755116736007, −9.040383673355449493566471334869, −8.406421134717823629249745723439, −7.28640376174527422467256990870, −6.55772624891666170416023108940, −5.22757972099651206888870742811, −4.57627878100346871250014223896, −3.88352876759695211646979256546, −2.45180527208939842868713003167, −1.06039411880304173487539663637,
0.907202853264175129552706536982, 2.59522486721728578693300738131, 3.52422571431006747144923502725, 4.20588463126734674923052319824, 5.67599942130219062127587902708, 6.56828564491659444012974343453, 7.23385594805841599856045740109, 8.128016120950141266878141323846, 8.447133588618260757867622428812, 10.02312613072430396577888081315