L(s) = 1 | + (0.637 + 1.10i)3-s + (1.60 + 2.77i)5-s + 1.25i·7-s + (0.688 − 1.19i)9-s + 2.11i·11-s + (−2.12 − 1.22i)13-s + (−2.04 + 3.53i)15-s + (0.765 + 1.32i)17-s + (−3.76 + 2.19i)19-s + (−1.37 + 0.796i)21-s + (7.61 + 4.39i)23-s + (−2.64 + 4.57i)25-s + 5.57·27-s + (5.20 + 3.00i)29-s − 7.78·31-s + ⋯ |
L(s) = 1 | + (0.367 + 0.637i)3-s + (0.717 + 1.24i)5-s + 0.472i·7-s + (0.229 − 0.397i)9-s + 0.636i·11-s + (−0.590 − 0.341i)13-s + (−0.527 + 0.913i)15-s + (0.185 + 0.321i)17-s + (−0.863 + 0.504i)19-s + (−0.301 + 0.173i)21-s + (1.58 + 0.917i)23-s + (−0.528 + 0.914i)25-s + 1.07·27-s + (0.967 + 0.558i)29-s − 1.39·31-s + ⋯ |
Λ(s)=(=(1216s/2ΓC(s)L(s)(−0.417−0.908i)Λ(2−s)
Λ(s)=(=(1216s/2ΓC(s+1/2)L(s)(−0.417−0.908i)Λ(1−s)
Degree: |
2 |
Conductor: |
1216
= 26⋅19
|
Sign: |
−0.417−0.908i
|
Analytic conductor: |
9.70980 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1216(639,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1216, ( :1/2), −0.417−0.908i)
|
Particular Values
L(1) |
≈ |
2.024725675 |
L(21) |
≈ |
2.024725675 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1+(3.76−2.19i)T |
good | 3 | 1+(−0.637−1.10i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−1.60−2.77i)T+(−2.5+4.33i)T2 |
| 7 | 1−1.25iT−7T2 |
| 11 | 1−2.11iT−11T2 |
| 13 | 1+(2.12+1.22i)T+(6.5+11.2i)T2 |
| 17 | 1+(−0.765−1.32i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−7.61−4.39i)T+(11.5+19.9i)T2 |
| 29 | 1+(−5.20−3.00i)T+(14.5+25.1i)T2 |
| 31 | 1+7.78T+31T2 |
| 37 | 1+9.97iT−37T2 |
| 41 | 1+(−1.09+0.631i)T+(20.5−35.5i)T2 |
| 43 | 1+(5.04−2.91i)T+(21.5−37.2i)T2 |
| 47 | 1+(6.12+3.53i)T+(23.5+40.7i)T2 |
| 53 | 1+(6.18+3.57i)T+(26.5+45.8i)T2 |
| 59 | 1+(2.83+4.91i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.80−4.86i)T+(−30.5−52.8i)T2 |
| 67 | 1+(0.0235−0.0408i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−3.12−5.41i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−0.658−1.13i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−3.77−6.53i)T+(−39.5+68.4i)T2 |
| 83 | 1−7.84iT−83T2 |
| 89 | 1+(6.02+3.47i)T+(44.5+77.0i)T2 |
| 97 | 1+(−8.51+4.91i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.930297564976434082742544978558, −9.396250486259978805584418989875, −8.572156971654281768047756971871, −7.32004513085687527246207507840, −6.77691428508652248315426730802, −5.80904243089063513602267832452, −4.89622299182986509117394761913, −3.66993057422961581593509505151, −2.91037463125627058054135140436, −1.87798175826145707021823497522,
0.839731580083763358103983801992, 1.87957751273009574078253571767, 2.98714430545485521610856607887, 4.65015965061072872611120592445, 4.93922424151873473921896351062, 6.24980003929915021151682406471, 7.00732368273116638523484716669, 7.941962984474611954283387533436, 8.703962697591025673673070488733, 9.237958454183641360794270438557