L(s) = 1 | + (0.121 − 0.0702i)3-s + (1.5 − 0.866i)5-s + 2i·7-s + (−1.49 + 2.58i)9-s + (−2.13 + 3.69i)13-s + (0.121 − 0.210i)15-s + (1.99 + 3.44i)17-s + (−4.31 + 0.630i)19-s + (0.140 + 0.243i)21-s + (−6.40 − 3.70i)23-s + (−1 + 1.73i)25-s + 0.839i·27-s + (1.99 − 3.44i)29-s − 8.62·31-s + (1.73 + 3i)35-s + ⋯ |
L(s) = 1 | + (0.0702 − 0.0405i)3-s + (0.670 − 0.387i)5-s + 0.755i·7-s + (−0.496 + 0.860i)9-s + (−0.590 + 1.02i)13-s + (0.0314 − 0.0543i)15-s + (0.482 + 0.836i)17-s + (−0.989 + 0.144i)19-s + (0.0306 + 0.0530i)21-s + (−1.33 − 0.771i)23-s + (−0.200 + 0.346i)25-s + 0.161i·27-s + (0.369 − 0.640i)29-s − 1.54·31-s + (0.292 + 0.507i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.304 - 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.304 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.235653074\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.235653074\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (4.31 - 0.630i)T \) |
good | 3 | \( 1 + (-0.121 + 0.0702i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.5 + 0.866i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 2iT - 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 + (2.13 - 3.69i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.99 - 3.44i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (6.40 + 3.70i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.99 + 3.44i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 8.62T + 31T^{2} \) |
| 37 | \( 1 - 7.26T + 37T^{2} \) |
| 41 | \( 1 + (6.39 - 3.69i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.16 - 10.6i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.364 - 0.210i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.48 + 9.49i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.21 - 0.700i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.92 + 1.10i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.81 + 1.05i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.970 + 1.68i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.5 - 4.33i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.70 - 4.68i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8.62T + 83T^{2} \) |
| 89 | \( 1 + (-14.5 - 8.39i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.39 - 3.69i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.851964274219244456106558781603, −9.180562398015760317858407738593, −8.363452894721871408843627462555, −7.74493215551036837809081104458, −6.40304955514082621228131980893, −5.83821929344037986243276536383, −4.95304807214290697016606340705, −3.99321090581671780475550468438, −2.41000041102627501412029117061, −1.87451264252166576248107898231,
0.48234309365699207345639393880, 2.16951257146972139665536456607, 3.23314402344832794208202516936, 4.14138259476655740867111786322, 5.45822027909683206502999475365, 6.04005234180005582847275140623, 7.08295975818626780033169200325, 7.70750281246000047428329364421, 8.800978555214558385541652872765, 9.574045001007696320701798444410