L(s) = 1 | + (0.121 − 0.0702i)3-s + (1.5 − 0.866i)5-s + 2i·7-s + (−1.49 + 2.58i)9-s + (−2.13 + 3.69i)13-s + (0.121 − 0.210i)15-s + (1.99 + 3.44i)17-s + (−4.31 + 0.630i)19-s + (0.140 + 0.243i)21-s + (−6.40 − 3.70i)23-s + (−1 + 1.73i)25-s + 0.839i·27-s + (1.99 − 3.44i)29-s − 8.62·31-s + (1.73 + 3i)35-s + ⋯ |
L(s) = 1 | + (0.0702 − 0.0405i)3-s + (0.670 − 0.387i)5-s + 0.755i·7-s + (−0.496 + 0.860i)9-s + (−0.590 + 1.02i)13-s + (0.0314 − 0.0543i)15-s + (0.482 + 0.836i)17-s + (−0.989 + 0.144i)19-s + (0.0306 + 0.0530i)21-s + (−1.33 − 0.771i)23-s + (−0.200 + 0.346i)25-s + 0.161i·27-s + (0.369 − 0.640i)29-s − 1.54·31-s + (0.292 + 0.507i)35-s + ⋯ |
Λ(s)=(=(1216s/2ΓC(s)L(s)(−0.304−0.952i)Λ(2−s)
Λ(s)=(=(1216s/2ΓC(s+1/2)L(s)(−0.304−0.952i)Λ(1−s)
Degree: |
2 |
Conductor: |
1216
= 26⋅19
|
Sign: |
−0.304−0.952i
|
Analytic conductor: |
9.70980 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1216(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1216, ( :1/2), −0.304−0.952i)
|
Particular Values
L(1) |
≈ |
1.235653074 |
L(21) |
≈ |
1.235653074 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1+(4.31−0.630i)T |
good | 3 | 1+(−0.121+0.0702i)T+(1.5−2.59i)T2 |
| 5 | 1+(−1.5+0.866i)T+(2.5−4.33i)T2 |
| 7 | 1−2iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1+(2.13−3.69i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−1.99−3.44i)T+(−8.5+14.7i)T2 |
| 23 | 1+(6.40+3.70i)T+(11.5+19.9i)T2 |
| 29 | 1+(−1.99+3.44i)T+(−14.5−25.1i)T2 |
| 31 | 1+8.62T+31T2 |
| 37 | 1−7.26T+37T2 |
| 41 | 1+(6.39−3.69i)T+(20.5−35.5i)T2 |
| 43 | 1+(−6.16−10.6i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−0.364−0.210i)T+(23.5+40.7i)T2 |
| 53 | 1+(−5.48+9.49i)T+(−26.5−45.8i)T2 |
| 59 | 1+(1.21−0.700i)T+(29.5−51.0i)T2 |
| 61 | 1+(1.92+1.10i)T+(30.5+52.8i)T2 |
| 67 | 1+(1.81+1.05i)T+(33.5+58.0i)T2 |
| 71 | 1+(0.970+1.68i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−2.5−4.33i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−2.70−4.68i)T+(−39.5+68.4i)T2 |
| 83 | 1−8.62T+83T2 |
| 89 | 1+(−14.5−8.39i)T+(44.5+77.0i)T2 |
| 97 | 1+(6.39−3.69i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.851964274219244456106558781603, −9.180562398015760317858407738593, −8.363452894721871408843627462555, −7.74493215551036837809081104458, −6.40304955514082621228131980893, −5.83821929344037986243276536383, −4.95304807214290697016606340705, −3.99321090581671780475550468438, −2.41000041102627501412029117061, −1.87451264252166576248107898231,
0.48234309365699207345639393880, 2.16951257146972139665536456607, 3.23314402344832794208202516936, 4.14138259476655740867111786322, 5.45822027909683206502999475365, 6.04005234180005582847275140623, 7.08295975818626780033169200325, 7.70750281246000047428329364421, 8.800978555214558385541652872765, 9.574045001007696320701798444410