L(s) = 1 | + 3-s + 8·5-s − 17·7-s − 26·9-s + 70·11-s + 61·13-s + 8·15-s + 83·17-s − 19·19-s − 17·21-s + 115·23-s − 61·25-s − 53·27-s − 279·29-s − 72·31-s + 70·33-s − 136·35-s + 34·37-s + 61·39-s + 108·41-s + 192·43-s − 208·45-s − 392·47-s − 54·49-s + 83·51-s − 131·53-s + 560·55-s + ⋯ |
L(s) = 1 | + 0.192·3-s + 0.715·5-s − 0.917·7-s − 0.962·9-s + 1.91·11-s + 1.30·13-s + 0.137·15-s + 1.18·17-s − 0.229·19-s − 0.176·21-s + 1.04·23-s − 0.487·25-s − 0.377·27-s − 1.78·29-s − 0.417·31-s + 0.369·33-s − 0.656·35-s + 0.151·37-s + 0.250·39-s + 0.411·41-s + 0.680·43-s − 0.689·45-s − 1.21·47-s − 0.157·49-s + 0.227·51-s − 0.339·53-s + 1.37·55-s + ⋯ |
Λ(s)=(=(1216s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1216s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.690172977 |
L(21) |
≈ |
2.690172977 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1+pT |
good | 3 | 1−T+p3T2 |
| 5 | 1−8T+p3T2 |
| 7 | 1+17T+p3T2 |
| 11 | 1−70T+p3T2 |
| 13 | 1−61T+p3T2 |
| 17 | 1−83T+p3T2 |
| 23 | 1−5pT+p3T2 |
| 29 | 1+279T+p3T2 |
| 31 | 1+72T+p3T2 |
| 37 | 1−34T+p3T2 |
| 41 | 1−108T+p3T2 |
| 43 | 1−192T+p3T2 |
| 47 | 1+392T+p3T2 |
| 53 | 1+131T+p3T2 |
| 59 | 1−609T+p3T2 |
| 61 | 1+338T+p3T2 |
| 67 | 1−461T+p3T2 |
| 71 | 1−750T+p3T2 |
| 73 | 1−1177T+p3T2 |
| 79 | 1+22T+p3T2 |
| 83 | 1−810T+p3T2 |
| 89 | 1+476T+p3T2 |
| 97 | 1−1426T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.276233092838817232407378248251, −8.864140576354861380061253434329, −7.76607992946098285409730474520, −6.56817419297560162083123762057, −6.14067386863665930609530442811, −5.37888289565725550576091196400, −3.71819781474324443672830356922, −3.41039964425079254379869351903, −1.94755849058392082225080345299, −0.861851611062581382759056021152,
0.861851611062581382759056021152, 1.94755849058392082225080345299, 3.41039964425079254379869351903, 3.71819781474324443672830356922, 5.37888289565725550576091196400, 6.14067386863665930609530442811, 6.56817419297560162083123762057, 7.76607992946098285409730474520, 8.864140576354861380061253434329, 9.276233092838817232407378248251