L(s) = 1 | + (−0.130 + 0.991i)2-s + (0.991 + 0.130i)3-s + (−0.965 − 0.258i)4-s + (−0.258 + 0.965i)6-s + (0.382 − 0.923i)8-s + (0.965 + 0.258i)9-s + (−0.0578 − 0.117i)11-s + (−0.923 − 0.382i)12-s + (0.866 + 0.5i)16-s + (0.608 − 0.793i)17-s + (−0.382 + 0.923i)18-s + (0.739 + 1.78i)19-s + (0.123 − 0.0420i)22-s + (0.5 − 0.866i)24-s + (−0.793 + 0.608i)25-s + ⋯ |
L(s) = 1 | + (−0.130 + 0.991i)2-s + (0.991 + 0.130i)3-s + (−0.965 − 0.258i)4-s + (−0.258 + 0.965i)6-s + (0.382 − 0.923i)8-s + (0.965 + 0.258i)9-s + (−0.0578 − 0.117i)11-s + (−0.923 − 0.382i)12-s + (0.866 + 0.5i)16-s + (0.608 − 0.793i)17-s + (−0.382 + 0.923i)18-s + (0.739 + 1.78i)19-s + (0.123 − 0.0420i)22-s + (0.5 − 0.866i)24-s + (−0.793 + 0.608i)25-s + ⋯ |
Λ(s)=(=(1224s/2ΓC(s)L(s)(0.206−0.978i)Λ(1−s)
Λ(s)=(=(1224s/2ΓC(s)L(s)(0.206−0.978i)Λ(1−s)
Degree: |
2 |
Conductor: |
1224
= 23⋅32⋅17
|
Sign: |
0.206−0.978i
|
Analytic conductor: |
0.610855 |
Root analytic conductor: |
0.781572 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1224(515,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1224, ( :0), 0.206−0.978i)
|
Particular Values
L(21) |
≈ |
1.295512832 |
L(21) |
≈ |
1.295512832 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.130−0.991i)T |
| 3 | 1+(−0.991−0.130i)T |
| 17 | 1+(−0.608+0.793i)T |
good | 5 | 1+(0.793−0.608i)T2 |
| 7 | 1+(−0.793−0.608i)T2 |
| 11 | 1+(0.0578+0.117i)T+(−0.608+0.793i)T2 |
| 13 | 1+(0.866+0.5i)T2 |
| 19 | 1+(−0.739−1.78i)T+(−0.707+0.707i)T2 |
| 23 | 1+(0.991+0.130i)T2 |
| 29 | 1+(−0.130−0.991i)T2 |
| 31 | 1+(−0.608−0.793i)T2 |
| 37 | 1+(0.382−0.923i)T2 |
| 41 | 1+(1.31+1.50i)T+(−0.130+0.991i)T2 |
| 43 | 1+(0.741+0.965i)T+(−0.258+0.965i)T2 |
| 47 | 1+(0.866−0.5i)T2 |
| 53 | 1+(−0.707+0.707i)T2 |
| 59 | 1+(−0.258+0.0340i)T+(0.965−0.258i)T2 |
| 61 | 1+(0.793+0.608i)T2 |
| 67 | 1+(1.37−0.793i)T+(0.5−0.866i)T2 |
| 71 | 1+(−0.382+0.923i)T2 |
| 73 | 1+(−0.172+0.867i)T+(−0.923−0.382i)T2 |
| 79 | 1+(−0.608+0.793i)T2 |
| 83 | 1+(0.758+0.0999i)T+(0.965+0.258i)T2 |
| 89 | 1+(1.30+1.30i)T+iT2 |
| 97 | 1+(−0.991+1.13i)T+(−0.130−0.991i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.968628203046819118382864804446, −9.080998506726375958431379823565, −8.421568370156410314557594419969, −7.57336200572014890763822780591, −7.18173994267915470688768803744, −5.88904535071486304451085906428, −5.16719320117643873570215025064, −3.98193916461049155017443002720, −3.27731426600377709206052513393, −1.60964664061964359731485009065,
1.36133624318732821079596927104, 2.53200576275795315873008682711, 3.31858626429759564719699486054, 4.28070034350693345658547639712, 5.17465671014218782949909761886, 6.58202237038833111172480724610, 7.64327991789084615392508435128, 8.286659135915719940776013280192, 9.046542854076860664164623611213, 9.785008326618562371883244296943