L(s) = 1 | + (−0.130 + 0.991i)2-s + (0.991 + 0.130i)3-s + (−0.965 − 0.258i)4-s + (−0.258 + 0.965i)6-s + (0.382 − 0.923i)8-s + (0.965 + 0.258i)9-s + (−0.0578 − 0.117i)11-s + (−0.923 − 0.382i)12-s + (0.866 + 0.5i)16-s + (0.608 − 0.793i)17-s + (−0.382 + 0.923i)18-s + (0.739 + 1.78i)19-s + (0.123 − 0.0420i)22-s + (0.5 − 0.866i)24-s + (−0.793 + 0.608i)25-s + ⋯ |
L(s) = 1 | + (−0.130 + 0.991i)2-s + (0.991 + 0.130i)3-s + (−0.965 − 0.258i)4-s + (−0.258 + 0.965i)6-s + (0.382 − 0.923i)8-s + (0.965 + 0.258i)9-s + (−0.0578 − 0.117i)11-s + (−0.923 − 0.382i)12-s + (0.866 + 0.5i)16-s + (0.608 − 0.793i)17-s + (−0.382 + 0.923i)18-s + (0.739 + 1.78i)19-s + (0.123 − 0.0420i)22-s + (0.5 − 0.866i)24-s + (−0.793 + 0.608i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.206 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.206 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.295512832\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.295512832\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.130 - 0.991i)T \) |
| 3 | \( 1 + (-0.991 - 0.130i)T \) |
| 17 | \( 1 + (-0.608 + 0.793i)T \) |
good | 5 | \( 1 + (0.793 - 0.608i)T^{2} \) |
| 7 | \( 1 + (-0.793 - 0.608i)T^{2} \) |
| 11 | \( 1 + (0.0578 + 0.117i)T + (-0.608 + 0.793i)T^{2} \) |
| 13 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (-0.739 - 1.78i)T + (-0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (0.991 + 0.130i)T^{2} \) |
| 29 | \( 1 + (-0.130 - 0.991i)T^{2} \) |
| 31 | \( 1 + (-0.608 - 0.793i)T^{2} \) |
| 37 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 41 | \( 1 + (1.31 + 1.50i)T + (-0.130 + 0.991i)T^{2} \) |
| 43 | \( 1 + (0.741 + 0.965i)T + (-0.258 + 0.965i)T^{2} \) |
| 47 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.258 + 0.0340i)T + (0.965 - 0.258i)T^{2} \) |
| 61 | \( 1 + (0.793 + 0.608i)T^{2} \) |
| 67 | \( 1 + (1.37 - 0.793i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 73 | \( 1 + (-0.172 + 0.867i)T + (-0.923 - 0.382i)T^{2} \) |
| 79 | \( 1 + (-0.608 + 0.793i)T^{2} \) |
| 83 | \( 1 + (0.758 + 0.0999i)T + (0.965 + 0.258i)T^{2} \) |
| 89 | \( 1 + (1.30 + 1.30i)T + iT^{2} \) |
| 97 | \( 1 + (-0.991 + 1.13i)T + (-0.130 - 0.991i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.968628203046819118382864804446, −9.080998506726375958431379823565, −8.421568370156410314557594419969, −7.57336200572014890763822780591, −7.18173994267915470688768803744, −5.88904535071486304451085906428, −5.16719320117643873570215025064, −3.98193916461049155017443002720, −3.27731426600377709206052513393, −1.60964664061964359731485009065,
1.36133624318732821079596927104, 2.53200576275795315873008682711, 3.31858626429759564719699486054, 4.28070034350693345658547639712, 5.17465671014218782949909761886, 6.58202237038833111172480724610, 7.64327991789084615392508435128, 8.286659135915719940776013280192, 9.046542854076860664164623611213, 9.785008326618562371883244296943