L(s) = 1 | + (−0.5 + 0.866i)2-s − 8-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (0.5 − 0.866i)16-s + (−0.499 − 0.866i)18-s − 0.999·22-s + (−0.5 + 0.866i)23-s − 29-s + (−0.5 + 0.866i)37-s + 43-s + (−0.499 − 0.866i)46-s + (1 + 1.73i)53-s + (0.5 − 0.866i)58-s + 64-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s − 8-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (0.5 − 0.866i)16-s + (−0.499 − 0.866i)18-s − 0.999·22-s + (−0.5 + 0.866i)23-s − 29-s + (−0.5 + 0.866i)37-s + 43-s + (−0.499 − 0.866i)46-s + (1 + 1.73i)53-s + (0.5 − 0.866i)58-s + 64-s + ⋯ |
Λ(s)=(=(1225s/2ΓC(s)L(s)(−0.895−0.444i)Λ(1−s)
Λ(s)=(=(1225s/2ΓC(s)L(s)(−0.895−0.444i)Λ(1−s)
Degree: |
2 |
Conductor: |
1225
= 52⋅72
|
Sign: |
−0.895−0.444i
|
Analytic conductor: |
0.611354 |
Root analytic conductor: |
0.781891 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1225(901,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1225, ( :0), −0.895−0.444i)
|
Particular Values
L(21) |
≈ |
0.6969593240 |
L(21) |
≈ |
0.6969593240 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1 |
good | 2 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 3 | 1+(0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 29 | 1+T+T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1−T+T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1+T+T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03313300817045812074929488173, −9.229758580470922955291942117830, −8.576136475883728372990583116844, −7.59842176902218999053938089307, −7.30725607402941585738144896994, −6.19099761555383735231315200215, −5.49525113082812853994718989058, −4.37372423176520755756869262364, −3.15985079605847204754569431114, −1.95256991266311545215048999760,
0.69949591763161655647229985242, 2.10925468469655311819240858735, 3.20266447089468753644929897930, 3.98645908157874496953427827379, 5.57428619416559246494646842947, 6.13763063646913018186982607990, 7.04006346212564303124405887976, 8.372531608678366215526791706188, 8.924255916202679686666584223595, 9.578040823003165920550467263826