L(s) = 1 | + (−0.5 + 0.866i)2-s − 8-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (0.5 − 0.866i)16-s + (−0.499 − 0.866i)18-s − 0.999·22-s + (−0.5 + 0.866i)23-s − 29-s + (−0.5 + 0.866i)37-s + 43-s + (−0.499 − 0.866i)46-s + (1 + 1.73i)53-s + (0.5 − 0.866i)58-s + 64-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s − 8-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (0.5 − 0.866i)16-s + (−0.499 − 0.866i)18-s − 0.999·22-s + (−0.5 + 0.866i)23-s − 29-s + (−0.5 + 0.866i)37-s + 43-s + (−0.499 − 0.866i)46-s + (1 + 1.73i)53-s + (0.5 − 0.866i)58-s + 64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 - 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 - 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6969593240\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6969593240\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 3 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03313300817045812074929488173, −9.229758580470922955291942117830, −8.576136475883728372990583116844, −7.59842176902218999053938089307, −7.30725607402941585738144896994, −6.19099761555383735231315200215, −5.49525113082812853994718989058, −4.37372423176520755756869262364, −3.15985079605847204754569431114, −1.95256991266311545215048999760,
0.69949591763161655647229985242, 2.10925468469655311819240858735, 3.20266447089468753644929897930, 3.98645908157874496953427827379, 5.57428619416559246494646842947, 6.13763063646913018186982607990, 7.04006346212564303124405887976, 8.372531608678366215526791706188, 8.924255916202679686666584223595, 9.578040823003165920550467263826