L(s) = 1 | − 0.915·2-s − 8.77·3-s − 7.16·4-s + 8.03·6-s + 13.8·8-s + 49.9·9-s − 45.6·11-s + 62.8·12-s − 16.0·13-s + 44.5·16-s + 7.28·17-s − 45.7·18-s + 75.6·19-s + 41.8·22-s − 15.8·23-s − 121.·24-s + 14.7·26-s − 201.·27-s + 119.·29-s + 59.5·31-s − 151.·32-s + 400.·33-s − 6.67·34-s − 357.·36-s − 304.·37-s − 69.2·38-s + 141.·39-s + ⋯ |
L(s) = 1 | − 0.323·2-s − 1.68·3-s − 0.895·4-s + 0.546·6-s + 0.613·8-s + 1.85·9-s − 1.25·11-s + 1.51·12-s − 0.343·13-s + 0.696·16-s + 0.103·17-s − 0.599·18-s + 0.913·19-s + 0.405·22-s − 0.143·23-s − 1.03·24-s + 0.111·26-s − 1.43·27-s + 0.764·29-s + 0.345·31-s − 0.839·32-s + 2.11·33-s − 0.0336·34-s − 1.65·36-s − 1.35·37-s − 0.295·38-s + 0.579·39-s + ⋯ |
Λ(s)=(=(1225s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1225s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.2553708112 |
L(21) |
≈ |
0.2553708112 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1 |
good | 2 | 1+0.915T+8T2 |
| 3 | 1+8.77T+27T2 |
| 11 | 1+45.6T+1.33e3T2 |
| 13 | 1+16.0T+2.19e3T2 |
| 17 | 1−7.28T+4.91e3T2 |
| 19 | 1−75.6T+6.85e3T2 |
| 23 | 1+15.8T+1.21e4T2 |
| 29 | 1−119.T+2.43e4T2 |
| 31 | 1−59.5T+2.97e4T2 |
| 37 | 1+304.T+5.06e4T2 |
| 41 | 1+238.T+6.89e4T2 |
| 43 | 1+365.T+7.95e4T2 |
| 47 | 1+100.T+1.03e5T2 |
| 53 | 1+740.T+1.48e5T2 |
| 59 | 1−285.T+2.05e5T2 |
| 61 | 1+400.T+2.26e5T2 |
| 67 | 1−128.T+3.00e5T2 |
| 71 | 1+39.1T+3.57e5T2 |
| 73 | 1+961.T+3.89e5T2 |
| 79 | 1+552.T+4.93e5T2 |
| 83 | 1−33.6T+5.71e5T2 |
| 89 | 1−856.T+7.04e5T2 |
| 97 | 1−771.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.670596033934037869558627683029, −8.488537605778158335548270284079, −7.68262039875955515929687413573, −6.82797063036917393026725702417, −5.79068778318718189288028155772, −5.04598011662329551835821072085, −4.69060612358520639276087991973, −3.26906649466948532804918315785, −1.47812967960477643445960167529, −0.31531534801067252471518172766,
0.31531534801067252471518172766, 1.47812967960477643445960167529, 3.26906649466948532804918315785, 4.69060612358520639276087991973, 5.04598011662329551835821072085, 5.79068778318718189288028155772, 6.82797063036917393026725702417, 7.68262039875955515929687413573, 8.488537605778158335548270284079, 9.670596033934037869558627683029