Properties

Label 2-35e2-1.1-c3-0-3
Degree $2$
Conductor $1225$
Sign $1$
Analytic cond. $72.2773$
Root an. cond. $8.50160$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.70·2-s − 5.70·3-s + 5.70·4-s + 21.1·6-s + 8.50·8-s + 5.50·9-s − 60.0·11-s − 32.5·12-s + 0.387·13-s − 77.1·16-s − 35.4·17-s − 20.3·18-s + 6.08·19-s + 222.·22-s + 31.5·23-s − 48.5·24-s − 1.43·26-s + 122.·27-s − 292.·29-s − 130.·31-s + 217.·32-s + 342.·33-s + 131.·34-s + 31.4·36-s − 219.·37-s − 22.5·38-s − 2.20·39-s + ⋯
L(s)  = 1  − 1.30·2-s − 1.09·3-s + 0.712·4-s + 1.43·6-s + 0.375·8-s + 0.203·9-s − 1.64·11-s − 0.782·12-s + 0.00826·13-s − 1.20·16-s − 0.506·17-s − 0.266·18-s + 0.0735·19-s + 2.15·22-s + 0.285·23-s − 0.412·24-s − 0.0108·26-s + 0.873·27-s − 1.87·29-s − 0.754·31-s + 1.20·32-s + 1.80·33-s + 0.662·34-s + 0.145·36-s − 0.977·37-s − 0.0962·38-s − 0.00907·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1225\)    =    \(5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(72.2773\)
Root analytic conductor: \(8.50160\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1225,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.05351258468\)
\(L(\frac12)\) \(\approx\) \(0.05351258468\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 \)
good2 \( 1 + 3.70T + 8T^{2} \)
3 \( 1 + 5.70T + 27T^{2} \)
11 \( 1 + 60.0T + 1.33e3T^{2} \)
13 \( 1 - 0.387T + 2.19e3T^{2} \)
17 \( 1 + 35.4T + 4.91e3T^{2} \)
19 \( 1 - 6.08T + 6.85e3T^{2} \)
23 \( 1 - 31.5T + 1.21e4T^{2} \)
29 \( 1 + 292.T + 2.43e4T^{2} \)
31 \( 1 + 130.T + 2.97e4T^{2} \)
37 \( 1 + 219.T + 5.06e4T^{2} \)
41 \( 1 - 447.T + 6.89e4T^{2} \)
43 \( 1 + 210.T + 7.95e4T^{2} \)
47 \( 1 - 457.T + 1.03e5T^{2} \)
53 \( 1 + 144.T + 1.48e5T^{2} \)
59 \( 1 + 767.T + 2.05e5T^{2} \)
61 \( 1 + 667.T + 2.26e5T^{2} \)
67 \( 1 - 77.4T + 3.00e5T^{2} \)
71 \( 1 + 906.T + 3.57e5T^{2} \)
73 \( 1 + 1.02e3T + 3.89e5T^{2} \)
79 \( 1 + 690.T + 4.93e5T^{2} \)
83 \( 1 + 979.T + 5.71e5T^{2} \)
89 \( 1 - 910.T + 7.04e5T^{2} \)
97 \( 1 - 11.1T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.312144710886985983574344385352, −8.672994436315380494406483350516, −7.62828586202697288559249550573, −7.24039175612004127202160946284, −5.98425370458440510995349275089, −5.32348790126992751945559774953, −4.39545732124155146864463272088, −2.77635314221715415030863428589, −1.56480391480945291709115318272, −0.15318667703053597618608718381, 0.15318667703053597618608718381, 1.56480391480945291709115318272, 2.77635314221715415030863428589, 4.39545732124155146864463272088, 5.32348790126992751945559774953, 5.98425370458440510995349275089, 7.24039175612004127202160946284, 7.62828586202697288559249550573, 8.672994436315380494406483350516, 9.312144710886985983574344385352

Graph of the $Z$-function along the critical line