L(s) = 1 | + (−0.296 + 0.514i)3-s + (0.933 + 1.61i)5-s + (−0.0665 + 2.64i)7-s + (1.32 + 2.29i)9-s + (−0.5 + 0.866i)11-s + 4.32·13-s − 1.10·15-s + (−0.230 + 0.398i)17-s + (0.769 + 1.33i)19-s + (−1.33 − 0.819i)21-s + (−1.73 − 2.99i)23-s + (0.757 − 1.31i)25-s − 3.35·27-s − 5.78·29-s + (−0.487 + 0.844i)31-s + ⋯ |
L(s) = 1 | + (−0.171 + 0.296i)3-s + (0.417 + 0.723i)5-s + (−0.0251 + 0.999i)7-s + (0.441 + 0.764i)9-s + (−0.150 + 0.261i)11-s + 1.20·13-s − 0.286·15-s + (−0.0558 + 0.0967i)17-s + (0.176 + 0.305i)19-s + (−0.292 − 0.178i)21-s + (−0.360 − 0.624i)23-s + (0.151 − 0.262i)25-s − 0.645·27-s − 1.07·29-s + (−0.0875 + 0.151i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.421 - 0.906i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.421 - 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.644333260\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.644333260\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.0665 - 2.64i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
good | 3 | \( 1 + (0.296 - 0.514i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.933 - 1.61i)T + (-2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 - 4.32T + 13T^{2} \) |
| 17 | \( 1 + (0.230 - 0.398i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.769 - 1.33i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.73 + 2.99i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 5.78T + 29T^{2} \) |
| 31 | \( 1 + (0.487 - 0.844i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.133 - 0.230i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 0.485T + 41T^{2} \) |
| 43 | \( 1 - 3.70T + 43T^{2} \) |
| 47 | \( 1 + (-3.23 - 5.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6.21 - 10.7i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.39 + 4.14i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.64 + 8.04i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.51 + 11.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.46T + 71T^{2} \) |
| 73 | \( 1 + (3.20 - 5.54i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.54 - 13.0i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 6.83T + 83T^{2} \) |
| 89 | \( 1 + (1.30 + 2.25i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 5.35T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.983974422878940222358961781052, −9.285544311810762095593343702624, −8.354696728623244998818858675890, −7.58037552777078380708124562420, −6.44703456262121125804385164169, −5.87883281588945876080675385882, −4.96458761714490718307784340808, −3.88210641351482324329811659325, −2.70598951697083816369289414866, −1.77674510500064850294721690132,
0.75113211551770793046289809912, 1.65792698040462913562445642436, 3.45353559249725831980869933792, 4.13554697444229815571300062099, 5.32199693336945828300206705571, 6.11062866499012988151553871287, 6.98560974135041120895610171379, 7.73363777145684639083031259965, 8.766887434445903317490602140283, 9.401690401633672717544813354239