L(s) = 1 | + (−0.296 + 0.514i)3-s + (0.933 + 1.61i)5-s + (−0.0665 + 2.64i)7-s + (1.32 + 2.29i)9-s + (−0.5 + 0.866i)11-s + 4.32·13-s − 1.10·15-s + (−0.230 + 0.398i)17-s + (0.769 + 1.33i)19-s + (−1.33 − 0.819i)21-s + (−1.73 − 2.99i)23-s + (0.757 − 1.31i)25-s − 3.35·27-s − 5.78·29-s + (−0.487 + 0.844i)31-s + ⋯ |
L(s) = 1 | + (−0.171 + 0.296i)3-s + (0.417 + 0.723i)5-s + (−0.0251 + 0.999i)7-s + (0.441 + 0.764i)9-s + (−0.150 + 0.261i)11-s + 1.20·13-s − 0.286·15-s + (−0.0558 + 0.0967i)17-s + (0.176 + 0.305i)19-s + (−0.292 − 0.178i)21-s + (−0.360 − 0.624i)23-s + (0.151 − 0.262i)25-s − 0.645·27-s − 1.07·29-s + (−0.0875 + 0.151i)31-s + ⋯ |
Λ(s)=(=(1232s/2ΓC(s)L(s)(−0.421−0.906i)Λ(2−s)
Λ(s)=(=(1232s/2ΓC(s+1/2)L(s)(−0.421−0.906i)Λ(1−s)
Degree: |
2 |
Conductor: |
1232
= 24⋅7⋅11
|
Sign: |
−0.421−0.906i
|
Analytic conductor: |
9.83756 |
Root analytic conductor: |
3.13649 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1232(529,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1232, ( :1/2), −0.421−0.906i)
|
Particular Values
L(1) |
≈ |
1.644333260 |
L(21) |
≈ |
1.644333260 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.0665−2.64i)T |
| 11 | 1+(0.5−0.866i)T |
good | 3 | 1+(0.296−0.514i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−0.933−1.61i)T+(−2.5+4.33i)T2 |
| 13 | 1−4.32T+13T2 |
| 17 | 1+(0.230−0.398i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.769−1.33i)T+(−9.5+16.4i)T2 |
| 23 | 1+(1.73+2.99i)T+(−11.5+19.9i)T2 |
| 29 | 1+5.78T+29T2 |
| 31 | 1+(0.487−0.844i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−0.133−0.230i)T+(−18.5+32.0i)T2 |
| 41 | 1−0.485T+41T2 |
| 43 | 1−3.70T+43T2 |
| 47 | 1+(−3.23−5.59i)T+(−23.5+40.7i)T2 |
| 53 | 1+(6.21−10.7i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−2.39+4.14i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.64+8.04i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.51+11.2i)T+(−33.5−58.0i)T2 |
| 71 | 1−6.46T+71T2 |
| 73 | 1+(3.20−5.54i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−7.54−13.0i)T+(−39.5+68.4i)T2 |
| 83 | 1+6.83T+83T2 |
| 89 | 1+(1.30+2.25i)T+(−44.5+77.0i)T2 |
| 97 | 1+5.35T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.983974422878940222358961781052, −9.285544311810762095593343702624, −8.354696728623244998818858675890, −7.58037552777078380708124562420, −6.44703456262121125804385164169, −5.87883281588945876080675385882, −4.96458761714490718307784340808, −3.88210641351482324329811659325, −2.70598951697083816369289414866, −1.77674510500064850294721690132,
0.75113211551770793046289809912, 1.65792698040462913562445642436, 3.45353559249725831980869933792, 4.13554697444229815571300062099, 5.32199693336945828300206705571, 6.11062866499012988151553871287, 6.98560974135041120895610171379, 7.73363777145684639083031259965, 8.766887434445903317490602140283, 9.401690401633672717544813354239