Properties

Label 2-1232-7.4-c1-0-13
Degree 22
Conductor 12321232
Sign 0.4210.906i-0.421 - 0.906i
Analytic cond. 9.837569.83756
Root an. cond. 3.136493.13649
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.296 + 0.514i)3-s + (0.933 + 1.61i)5-s + (−0.0665 + 2.64i)7-s + (1.32 + 2.29i)9-s + (−0.5 + 0.866i)11-s + 4.32·13-s − 1.10·15-s + (−0.230 + 0.398i)17-s + (0.769 + 1.33i)19-s + (−1.33 − 0.819i)21-s + (−1.73 − 2.99i)23-s + (0.757 − 1.31i)25-s − 3.35·27-s − 5.78·29-s + (−0.487 + 0.844i)31-s + ⋯
L(s)  = 1  + (−0.171 + 0.296i)3-s + (0.417 + 0.723i)5-s + (−0.0251 + 0.999i)7-s + (0.441 + 0.764i)9-s + (−0.150 + 0.261i)11-s + 1.20·13-s − 0.286·15-s + (−0.0558 + 0.0967i)17-s + (0.176 + 0.305i)19-s + (−0.292 − 0.178i)21-s + (−0.360 − 0.624i)23-s + (0.151 − 0.262i)25-s − 0.645·27-s − 1.07·29-s + (−0.0875 + 0.151i)31-s + ⋯

Functional equation

Λ(s)=(1232s/2ΓC(s)L(s)=((0.4210.906i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.421 - 0.906i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1232s/2ΓC(s+1/2)L(s)=((0.4210.906i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.421 - 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 12321232    =    247112^{4} \cdot 7 \cdot 11
Sign: 0.4210.906i-0.421 - 0.906i
Analytic conductor: 9.837569.83756
Root analytic conductor: 3.136493.13649
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1232(529,)\chi_{1232} (529, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1232, ( :1/2), 0.4210.906i)(2,\ 1232,\ (\ :1/2),\ -0.421 - 0.906i)

Particular Values

L(1)L(1) \approx 1.6443332601.644333260
L(12)L(\frac12) \approx 1.6443332601.644333260
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1+(0.06652.64i)T 1 + (0.0665 - 2.64i)T
11 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
good3 1+(0.2960.514i)T+(1.52.59i)T2 1 + (0.296 - 0.514i)T + (-1.5 - 2.59i)T^{2}
5 1+(0.9331.61i)T+(2.5+4.33i)T2 1 + (-0.933 - 1.61i)T + (-2.5 + 4.33i)T^{2}
13 14.32T+13T2 1 - 4.32T + 13T^{2}
17 1+(0.2300.398i)T+(8.514.7i)T2 1 + (0.230 - 0.398i)T + (-8.5 - 14.7i)T^{2}
19 1+(0.7691.33i)T+(9.5+16.4i)T2 1 + (-0.769 - 1.33i)T + (-9.5 + 16.4i)T^{2}
23 1+(1.73+2.99i)T+(11.5+19.9i)T2 1 + (1.73 + 2.99i)T + (-11.5 + 19.9i)T^{2}
29 1+5.78T+29T2 1 + 5.78T + 29T^{2}
31 1+(0.4870.844i)T+(15.526.8i)T2 1 + (0.487 - 0.844i)T + (-15.5 - 26.8i)T^{2}
37 1+(0.1330.230i)T+(18.5+32.0i)T2 1 + (-0.133 - 0.230i)T + (-18.5 + 32.0i)T^{2}
41 10.485T+41T2 1 - 0.485T + 41T^{2}
43 13.70T+43T2 1 - 3.70T + 43T^{2}
47 1+(3.235.59i)T+(23.5+40.7i)T2 1 + (-3.23 - 5.59i)T + (-23.5 + 40.7i)T^{2}
53 1+(6.2110.7i)T+(26.545.8i)T2 1 + (6.21 - 10.7i)T + (-26.5 - 45.8i)T^{2}
59 1+(2.39+4.14i)T+(29.551.0i)T2 1 + (-2.39 + 4.14i)T + (-29.5 - 51.0i)T^{2}
61 1+(4.64+8.04i)T+(30.5+52.8i)T2 1 + (4.64 + 8.04i)T + (-30.5 + 52.8i)T^{2}
67 1+(6.51+11.2i)T+(33.558.0i)T2 1 + (-6.51 + 11.2i)T + (-33.5 - 58.0i)T^{2}
71 16.46T+71T2 1 - 6.46T + 71T^{2}
73 1+(3.205.54i)T+(36.563.2i)T2 1 + (3.20 - 5.54i)T + (-36.5 - 63.2i)T^{2}
79 1+(7.5413.0i)T+(39.5+68.4i)T2 1 + (-7.54 - 13.0i)T + (-39.5 + 68.4i)T^{2}
83 1+6.83T+83T2 1 + 6.83T + 83T^{2}
89 1+(1.30+2.25i)T+(44.5+77.0i)T2 1 + (1.30 + 2.25i)T + (-44.5 + 77.0i)T^{2}
97 1+5.35T+97T2 1 + 5.35T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.983974422878940222358961781052, −9.285544311810762095593343702624, −8.354696728623244998818858675890, −7.58037552777078380708124562420, −6.44703456262121125804385164169, −5.87883281588945876080675385882, −4.96458761714490718307784340808, −3.88210641351482324329811659325, −2.70598951697083816369289414866, −1.77674510500064850294721690132, 0.75113211551770793046289809912, 1.65792698040462913562445642436, 3.45353559249725831980869933792, 4.13554697444229815571300062099, 5.32199693336945828300206705571, 6.11062866499012988151553871287, 6.98560974135041120895610171379, 7.73363777145684639083031259965, 8.766887434445903317490602140283, 9.401690401633672717544813354239

Graph of the ZZ-function along the critical line