Properties

Label 2-1232-1.1-c3-0-37
Degree $2$
Conductor $1232$
Sign $-1$
Analytic cond. $72.6903$
Root an. cond. $8.52586$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.60·3-s − 19.7·5-s − 7·7-s − 14.0·9-s + 11·11-s + 0.0182·13-s + 71.1·15-s + 41.9·17-s + 20.9·19-s + 25.2·21-s − 47.5·23-s + 265.·25-s + 147.·27-s + 141.·29-s + 1.39·31-s − 39.6·33-s + 138.·35-s − 67.5·37-s − 0.0656·39-s + 211.·41-s + 101.·43-s + 276.·45-s − 548.·47-s + 49·49-s − 151.·51-s + 701.·53-s − 217.·55-s + ⋯
L(s)  = 1  − 0.693·3-s − 1.76·5-s − 0.377·7-s − 0.519·9-s + 0.301·11-s + 0.000388·13-s + 1.22·15-s + 0.598·17-s + 0.253·19-s + 0.262·21-s − 0.430·23-s + 2.12·25-s + 1.05·27-s + 0.903·29-s + 0.00809·31-s − 0.209·33-s + 0.667·35-s − 0.300·37-s − 0.000269·39-s + 0.807·41-s + 0.360·43-s + 0.917·45-s − 1.70·47-s + 0.142·49-s − 0.415·51-s + 1.81·53-s − 0.532·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1232\)    =    \(2^{4} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(72.6903\)
Root analytic conductor: \(8.52586\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1232,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 - 11T \)
good3 \( 1 + 3.60T + 27T^{2} \)
5 \( 1 + 19.7T + 125T^{2} \)
13 \( 1 - 0.0182T + 2.19e3T^{2} \)
17 \( 1 - 41.9T + 4.91e3T^{2} \)
19 \( 1 - 20.9T + 6.85e3T^{2} \)
23 \( 1 + 47.5T + 1.21e4T^{2} \)
29 \( 1 - 141.T + 2.43e4T^{2} \)
31 \( 1 - 1.39T + 2.97e4T^{2} \)
37 \( 1 + 67.5T + 5.06e4T^{2} \)
41 \( 1 - 211.T + 6.89e4T^{2} \)
43 \( 1 - 101.T + 7.95e4T^{2} \)
47 \( 1 + 548.T + 1.03e5T^{2} \)
53 \( 1 - 701.T + 1.48e5T^{2} \)
59 \( 1 + 66.9T + 2.05e5T^{2} \)
61 \( 1 - 175.T + 2.26e5T^{2} \)
67 \( 1 + 168.T + 3.00e5T^{2} \)
71 \( 1 + 100.T + 3.57e5T^{2} \)
73 \( 1 + 163.T + 3.89e5T^{2} \)
79 \( 1 + 119.T + 4.93e5T^{2} \)
83 \( 1 - 86.6T + 5.71e5T^{2} \)
89 \( 1 - 507.T + 7.04e5T^{2} \)
97 \( 1 + 1.22e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.718208247381990818541459756279, −8.122376802123531773144915573683, −7.28312713994604720139072207485, −6.50448400110678932381187925385, −5.53231917221928221409785985297, −4.56621241759995096655779570342, −3.71027064984486985497784032491, −2.86655449367963239661397147184, −0.918259867719945211447512254193, 0, 0.918259867719945211447512254193, 2.86655449367963239661397147184, 3.71027064984486985497784032491, 4.56621241759995096655779570342, 5.53231917221928221409785985297, 6.50448400110678932381187925385, 7.28312713994604720139072207485, 8.122376802123531773144915573683, 8.718208247381990818541459756279

Graph of the $Z$-function along the critical line