Properties

Label 2-1232-1.1-c3-0-43
Degree $2$
Conductor $1232$
Sign $1$
Analytic cond. $72.6903$
Root an. cond. $8.52586$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.65·3-s − 3.08·5-s − 7·7-s + 66.1·9-s − 11·11-s + 13.5·13-s − 29.8·15-s − 87.3·17-s + 23.4·19-s − 67.5·21-s + 193.·23-s − 115.·25-s + 378.·27-s + 224.·29-s + 84.0·31-s − 106.·33-s + 21.6·35-s + 138.·37-s + 130.·39-s + 404.·41-s + 138.·43-s − 204.·45-s + 198.·47-s + 49·49-s − 843.·51-s + 423.·53-s + 33.9·55-s + ⋯
L(s)  = 1  + 1.85·3-s − 0.276·5-s − 0.377·7-s + 2.45·9-s − 0.301·11-s + 0.288·13-s − 0.513·15-s − 1.24·17-s + 0.283·19-s − 0.702·21-s + 1.75·23-s − 0.923·25-s + 2.69·27-s + 1.43·29-s + 0.486·31-s − 0.560·33-s + 0.104·35-s + 0.615·37-s + 0.535·39-s + 1.54·41-s + 0.489·43-s − 0.676·45-s + 0.614·47-s + 0.142·49-s − 2.31·51-s + 1.09·53-s + 0.0832·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1232\)    =    \(2^{4} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(72.6903\)
Root analytic conductor: \(8.52586\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1232,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.265290730\)
\(L(\frac12)\) \(\approx\) \(4.265290730\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 + 11T \)
good3 \( 1 - 9.65T + 27T^{2} \)
5 \( 1 + 3.08T + 125T^{2} \)
13 \( 1 - 13.5T + 2.19e3T^{2} \)
17 \( 1 + 87.3T + 4.91e3T^{2} \)
19 \( 1 - 23.4T + 6.85e3T^{2} \)
23 \( 1 - 193.T + 1.21e4T^{2} \)
29 \( 1 - 224.T + 2.43e4T^{2} \)
31 \( 1 - 84.0T + 2.97e4T^{2} \)
37 \( 1 - 138.T + 5.06e4T^{2} \)
41 \( 1 - 404.T + 6.89e4T^{2} \)
43 \( 1 - 138.T + 7.95e4T^{2} \)
47 \( 1 - 198.T + 1.03e5T^{2} \)
53 \( 1 - 423.T + 1.48e5T^{2} \)
59 \( 1 - 311.T + 2.05e5T^{2} \)
61 \( 1 + 262.T + 2.26e5T^{2} \)
67 \( 1 + 441.T + 3.00e5T^{2} \)
71 \( 1 + 731.T + 3.57e5T^{2} \)
73 \( 1 + 723.T + 3.89e5T^{2} \)
79 \( 1 - 647.T + 4.93e5T^{2} \)
83 \( 1 + 72.9T + 5.71e5T^{2} \)
89 \( 1 + 243.T + 7.04e5T^{2} \)
97 \( 1 - 1.61e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.938740440866195368360131430843, −8.829314113811933063775135387486, −7.73850448872567094944555260114, −7.21534787953682923233056128026, −6.23184136553215791047383981832, −4.69162685903982842033479751080, −3.97899842052922618543110053169, −2.95233578187767413045587384577, −2.39658078810104901329302519693, −0.998819271263063248124085349073, 0.998819271263063248124085349073, 2.39658078810104901329302519693, 2.95233578187767413045587384577, 3.97899842052922618543110053169, 4.69162685903982842033479751080, 6.23184136553215791047383981832, 7.21534787953682923233056128026, 7.73850448872567094944555260114, 8.829314113811933063775135387486, 8.938740440866195368360131430843

Graph of the $Z$-function along the critical line