L(s) = 1 | + 9.65·3-s − 3.08·5-s − 7·7-s + 66.1·9-s − 11·11-s + 13.5·13-s − 29.8·15-s − 87.3·17-s + 23.4·19-s − 67.5·21-s + 193.·23-s − 115.·25-s + 378.·27-s + 224.·29-s + 84.0·31-s − 106.·33-s + 21.6·35-s + 138.·37-s + 130.·39-s + 404.·41-s + 138.·43-s − 204.·45-s + 198.·47-s + 49·49-s − 843.·51-s + 423.·53-s + 33.9·55-s + ⋯ |
L(s) = 1 | + 1.85·3-s − 0.276·5-s − 0.377·7-s + 2.45·9-s − 0.301·11-s + 0.288·13-s − 0.513·15-s − 1.24·17-s + 0.283·19-s − 0.702·21-s + 1.75·23-s − 0.923·25-s + 2.69·27-s + 1.43·29-s + 0.486·31-s − 0.560·33-s + 0.104·35-s + 0.615·37-s + 0.535·39-s + 1.54·41-s + 0.489·43-s − 0.676·45-s + 0.614·47-s + 0.142·49-s − 2.31·51-s + 1.09·53-s + 0.0832·55-s + ⋯ |
Λ(s)=(=(1232s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1232s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
4.265290730 |
L(21) |
≈ |
4.265290730 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+7T |
| 11 | 1+11T |
good | 3 | 1−9.65T+27T2 |
| 5 | 1+3.08T+125T2 |
| 13 | 1−13.5T+2.19e3T2 |
| 17 | 1+87.3T+4.91e3T2 |
| 19 | 1−23.4T+6.85e3T2 |
| 23 | 1−193.T+1.21e4T2 |
| 29 | 1−224.T+2.43e4T2 |
| 31 | 1−84.0T+2.97e4T2 |
| 37 | 1−138.T+5.06e4T2 |
| 41 | 1−404.T+6.89e4T2 |
| 43 | 1−138.T+7.95e4T2 |
| 47 | 1−198.T+1.03e5T2 |
| 53 | 1−423.T+1.48e5T2 |
| 59 | 1−311.T+2.05e5T2 |
| 61 | 1+262.T+2.26e5T2 |
| 67 | 1+441.T+3.00e5T2 |
| 71 | 1+731.T+3.57e5T2 |
| 73 | 1+723.T+3.89e5T2 |
| 79 | 1−647.T+4.93e5T2 |
| 83 | 1+72.9T+5.71e5T2 |
| 89 | 1+243.T+7.04e5T2 |
| 97 | 1−1.61e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.938740440866195368360131430843, −8.829314113811933063775135387486, −7.73850448872567094944555260114, −7.21534787953682923233056128026, −6.23184136553215791047383981832, −4.69162685903982842033479751080, −3.97899842052922618543110053169, −2.95233578187767413045587384577, −2.39658078810104901329302519693, −0.998819271263063248124085349073,
0.998819271263063248124085349073, 2.39658078810104901329302519693, 2.95233578187767413045587384577, 3.97899842052922618543110053169, 4.69162685903982842033479751080, 6.23184136553215791047383981832, 7.21534787953682923233056128026, 7.73850448872567094944555260114, 8.829314113811933063775135387486, 8.938740440866195368360131430843