L(s) = 1 | + 2·3-s − 8·5-s + 14·7-s − 6·9-s − 22·11-s − 18·13-s − 16·15-s − 74·17-s − 160·19-s + 28·21-s + 20·23-s − 182·25-s + 22·27-s + 72·29-s − 238·31-s − 44·33-s − 112·35-s − 56·37-s − 36·39-s + 262·41-s + 376·43-s + 48·45-s + 78·47-s + 147·49-s − 148·51-s + 496·53-s + 176·55-s + ⋯ |
L(s) = 1 | + 0.384·3-s − 0.715·5-s + 0.755·7-s − 2/9·9-s − 0.603·11-s − 0.384·13-s − 0.275·15-s − 1.05·17-s − 1.93·19-s + 0.290·21-s + 0.181·23-s − 1.45·25-s + 0.156·27-s + 0.461·29-s − 1.37·31-s − 0.232·33-s − 0.540·35-s − 0.248·37-s − 0.147·39-s + 0.997·41-s + 1.33·43-s + 0.159·45-s + 0.242·47-s + 3/7·49-s − 0.406·51-s + 1.28·53-s + 0.431·55-s + ⋯ |
Λ(s)=(=(1517824s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1517824s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1517824
= 28⋅72⋅112
|
Sign: |
1
|
Analytic conductor: |
5283.88 |
Root analytic conductor: |
8.52586 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1517824, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−pT)2 |
| 11 | C1 | (1+pT)2 |
good | 3 | D4 | 1−2T+10T2−2p3T3+p6T4 |
| 5 | D4 | 1+8T+246T2+8p3T3+p6T4 |
| 13 | D4 | 1+18T+3030T2+18p3T3+p6T4 |
| 17 | D4 | 1+74T+8070T2+74p3T3+p6T4 |
| 19 | D4 | 1+160T+20038T2+160p3T3+p6T4 |
| 23 | D4 | 1−20T+19934T2−20p3T3+p6T4 |
| 29 | D4 | 1−72T+30854T2−72p3T3+p6T4 |
| 31 | D4 | 1+238T+73338T2+238p3T3+p6T4 |
| 37 | D4 | 1+56T−42410T2+56p3T3+p6T4 |
| 41 | D4 | 1−262T+128358T2−262p3T3+p6T4 |
| 43 | D4 | 1−376T+152038T2−376p3T3+p6T4 |
| 47 | D4 | 1−78T+171322T2−78p3T3+p6T4 |
| 53 | D4 | 1−496T+358758T2−496p3T3+p6T4 |
| 59 | D4 | 1+998T+620154T2+998p3T3+p6T4 |
| 61 | D4 | 1−1562T+1063518T2−1562p3T3+p6T4 |
| 67 | D4 | 1−500T+658246T2−500p3T3+p6T4 |
| 71 | D4 | 1+2100T+1817342T2+2100p3T3+p6T4 |
| 73 | D4 | 1−586T+43758T2−586p3T3+p6T4 |
| 79 | D4 | 1−16T+985422T2−16p3T3+p6T4 |
| 83 | D4 | 1−1648T+1419270T2−1648p3T3+p6T4 |
| 89 | D4 | 1+940T+1238838T2+940p3T3+p6T4 |
| 97 | D4 | 1−1152T+2072622T2−1152p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.959972410253618877614663164912, −8.766682748563349426969670543923, −8.197669088511216850279697691680, −8.097049928413454484847070384127, −7.46976553004778758148066027127, −7.28692272837988702616436077594, −6.73993681424293674805772528041, −6.22311741924035161602309228244, −5.68962961358465638430633337136, −5.40345100893646698679185188488, −4.61738634343120990046799781716, −4.41699164947124921496560406802, −3.92947039733666461026610878244, −3.57671291501064408563487291310, −2.56342755547118177495019595074, −2.39328452904396865660747681450, −1.93618153059689036238298678767, −1.04459560422884113672584049805, 0, 0,
1.04459560422884113672584049805, 1.93618153059689036238298678767, 2.39328452904396865660747681450, 2.56342755547118177495019595074, 3.57671291501064408563487291310, 3.92947039733666461026610878244, 4.41699164947124921496560406802, 4.61738634343120990046799781716, 5.40345100893646698679185188488, 5.68962961358465638430633337136, 6.22311741924035161602309228244, 6.73993681424293674805772528041, 7.28692272837988702616436077594, 7.46976553004778758148066027127, 8.097049928413454484847070384127, 8.197669088511216850279697691680, 8.766682748563349426969670543923, 8.959972410253618877614663164912