L(s) = 1 | + 2·3-s − 12.1·5-s + 7·7-s − 23·9-s − 11·11-s + 32.3·13-s − 24.3·15-s − 42.4·17-s + 127.·19-s + 14·21-s + 202.·23-s + 22.9·25-s − 100·27-s + 126.·29-s + 4.16·31-s − 22·33-s − 85.1·35-s − 111.·37-s + 64.6·39-s + 233.·41-s − 476.·43-s + 279.·45-s − 550.·47-s + 49·49-s − 84.9·51-s − 138.·53-s + 133.·55-s + ⋯ |
L(s) = 1 | + 0.384·3-s − 1.08·5-s + 0.377·7-s − 0.851·9-s − 0.301·11-s + 0.689·13-s − 0.418·15-s − 0.606·17-s + 1.53·19-s + 0.145·21-s + 1.83·23-s + 0.183·25-s − 0.712·27-s + 0.813·29-s + 0.0241·31-s − 0.116·33-s − 0.411·35-s − 0.494·37-s + 0.265·39-s + 0.889·41-s − 1.69·43-s + 0.926·45-s − 1.70·47-s + 0.142·49-s − 0.233·51-s − 0.360·53-s + 0.328·55-s + ⋯ |
Λ(s)=(=(1232s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1232s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−7T |
| 11 | 1+11T |
good | 3 | 1−2T+27T2 |
| 5 | 1+12.1T+125T2 |
| 13 | 1−32.3T+2.19e3T2 |
| 17 | 1+42.4T+4.91e3T2 |
| 19 | 1−127.T+6.85e3T2 |
| 23 | 1−202.T+1.21e4T2 |
| 29 | 1−126.T+2.43e4T2 |
| 31 | 1−4.16T+2.97e4T2 |
| 37 | 1+111.T+5.06e4T2 |
| 41 | 1−233.T+6.89e4T2 |
| 43 | 1+476.T+7.95e4T2 |
| 47 | 1+550.T+1.03e5T2 |
| 53 | 1+138.T+1.48e5T2 |
| 59 | 1+276.T+2.05e5T2 |
| 61 | 1+619.T+2.26e5T2 |
| 67 | 1−127.T+3.00e5T2 |
| 71 | 1−464.T+3.57e5T2 |
| 73 | 1−103.T+3.89e5T2 |
| 79 | 1+1.20e3T+4.93e5T2 |
| 83 | 1+1.24e3T+5.71e5T2 |
| 89 | 1−931.T+7.04e5T2 |
| 97 | 1+1.03e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.738845106108238624611445375660, −8.181999593543837523931289843218, −7.47796766157947515697691584644, −6.57987725302771674719848964950, −5.38828003209066394005868420055, −4.63260282289843914274474593876, −3.43698223170941542948787903473, −2.89524194664079758459752015036, −1.30494788038398828130851024396, 0,
1.30494788038398828130851024396, 2.89524194664079758459752015036, 3.43698223170941542948787903473, 4.63260282289843914274474593876, 5.38828003209066394005868420055, 6.57987725302771674719848964950, 7.47796766157947515697691584644, 8.181999593543837523931289843218, 8.738845106108238624611445375660