L(s) = 1 | + 5·3-s − 17·5-s + 14·7-s − 21·9-s + 22·11-s − 86·13-s − 85·15-s − 66·17-s + 136·19-s + 70·21-s − 17·23-s + 95·25-s − 200·27-s + 124·29-s + 71·31-s + 110·33-s − 238·35-s − 135·37-s − 430·39-s − 618·41-s − 604·43-s + 357·45-s − 2·47-s + 147·49-s − 330·51-s + 152·53-s − 374·55-s + ⋯ |
L(s) = 1 | + 0.962·3-s − 1.52·5-s + 0.755·7-s − 7/9·9-s + 0.603·11-s − 1.83·13-s − 1.46·15-s − 0.941·17-s + 1.64·19-s + 0.727·21-s − 0.154·23-s + 0.759·25-s − 1.42·27-s + 0.794·29-s + 0.411·31-s + 0.580·33-s − 1.14·35-s − 0.599·37-s − 1.76·39-s − 2.35·41-s − 2.14·43-s + 1.18·45-s − 0.00620·47-s + 3/7·49-s − 0.906·51-s + 0.393·53-s − 0.916·55-s + ⋯ |
Λ(s)=(=(1517824s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1517824s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1517824
= 28⋅72⋅112
|
Sign: |
1
|
Analytic conductor: |
5283.88 |
Root analytic conductor: |
8.52586 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1517824, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−pT)2 |
| 11 | C1 | (1−pT)2 |
good | 3 | D4 | 1−5T+46T2−5p3T3+p6T4 |
| 5 | D4 | 1+17T+194T2+17p3T3+p6T4 |
| 13 | D4 | 1+86T+6186T2+86p3T3+p6T4 |
| 17 | D4 | 1+66T+1282T2+66p3T3+p6T4 |
| 19 | D4 | 1−136T+18114T2−136p3T3+p6T4 |
| 23 | D4 | 1+17T+18122T2+17p3T3+p6T4 |
| 29 | D4 | 1−124T+19790T2−124p3T3+p6T4 |
| 31 | D4 | 1−71T+59688T2−71p3T3+p6T4 |
| 37 | D4 | 1+135T+101744T2+135p3T3+p6T4 |
| 41 | D4 | 1+618T+203170T2+618p3T3+p6T4 |
| 43 | D4 | 1+604T+211686T2+604p3T3+p6T4 |
| 47 | D4 | 1+2T−48226T2+2p3T3+p6T4 |
| 53 | D4 | 1−152T−118042T2−152p3T3+p6T4 |
| 59 | D4 | 1−343T+251714T2−343p3T3+p6T4 |
| 61 | D4 | 1−380T+7614T2−380p3T3+p6T4 |
| 67 | D4 | 1+1027T+851514T2+1027p3T3+p6T4 |
| 71 | D4 | 1−1169T+1028606T2−1169p3T3+p6T4 |
| 73 | D4 | 1+94T+755106T2+94p3T3+p6T4 |
| 79 | D4 | 1+842T+1127694T2+842p3T3+p6T4 |
| 83 | D4 | 1−1486T+1670486T2−1486p3T3+p6T4 |
| 89 | D4 | 1+361T+1240724T2+361p3T3+p6T4 |
| 97 | D4 | 1−225T+1794896T2−225p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.965789640618317442242401539433, −8.596240282729508514910398704147, −8.194614939414958622820808412601, −8.183394936218209261580222839283, −7.47090262732493261806893103095, −7.36086694228590903178907474779, −6.64834927222021733116547255860, −6.61466513724391250280673592379, −5.47569522684061874972217817267, −5.26577134860883502587812435887, −4.74939898267623058648779762062, −4.46256433401156783300579823659, −3.57989679136885331387883811667, −3.54453773665103391522966030240, −2.91553962195133858767669820248, −2.40806162750964078785910804729, −1.86128630814384674719530421905, −1.06027715211277279575475315198, 0, 0,
1.06027715211277279575475315198, 1.86128630814384674719530421905, 2.40806162750964078785910804729, 2.91553962195133858767669820248, 3.54453773665103391522966030240, 3.57989679136885331387883811667, 4.46256433401156783300579823659, 4.74939898267623058648779762062, 5.26577134860883502587812435887, 5.47569522684061874972217817267, 6.61466513724391250280673592379, 6.64834927222021733116547255860, 7.36086694228590903178907474779, 7.47090262732493261806893103095, 8.183394936218209261580222839283, 8.194614939414958622820808412601, 8.596240282729508514910398704147, 8.965789640618317442242401539433