L(s) = 1 | + (0.5 + 0.866i)2-s + (0.866 − 0.5i)3-s + (−0.499 + 0.866i)4-s + (−2.02 − 3.51i)5-s + (0.866 + 0.499i)6-s − 4.70i·7-s − 0.999·8-s + (0.499 − 0.866i)9-s + (2.02 − 3.51i)10-s + (3.26 + 0.586i)11-s + 0.999i·12-s + (−2.31 + 4.00i)13-s + (4.07 − 2.35i)14-s + (−3.51 − 2.02i)15-s + (−0.5 − 0.866i)16-s + (−5.05 + 2.91i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.499 − 0.288i)3-s + (−0.249 + 0.433i)4-s + (−0.907 − 1.57i)5-s + (0.353 + 0.204i)6-s − 1.77i·7-s − 0.353·8-s + (0.166 − 0.288i)9-s + (0.641 − 1.11i)10-s + (0.984 + 0.176i)11-s + 0.288i·12-s + (−0.641 + 1.11i)13-s + (1.08 − 0.628i)14-s + (−0.907 − 0.524i)15-s + (−0.125 − 0.216i)16-s + (−1.22 + 0.707i)17-s + ⋯ |
Λ(s)=(=(1254s/2ΓC(s)L(s)(−0.662+0.749i)Λ(2−s)
Λ(s)=(=(1254s/2ΓC(s+1/2)L(s)(−0.662+0.749i)Λ(1−s)
Degree: |
2 |
Conductor: |
1254
= 2⋅3⋅11⋅19
|
Sign: |
−0.662+0.749i
|
Analytic conductor: |
10.0132 |
Root analytic conductor: |
3.16437 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1254(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1254, ( :1/2), −0.662+0.749i)
|
Particular Values
L(1) |
≈ |
1.202291938 |
L(21) |
≈ |
1.202291938 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1+(−0.866+0.5i)T |
| 11 | 1+(−3.26−0.586i)T |
| 19 | 1+(2.45+3.60i)T |
good | 5 | 1+(2.02+3.51i)T+(−2.5+4.33i)T2 |
| 7 | 1+4.70iT−7T2 |
| 13 | 1+(2.31−4.00i)T+(−6.5−11.2i)T2 |
| 17 | 1+(5.05−2.91i)T+(8.5−14.7i)T2 |
| 23 | 1+(1.59−2.76i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.36+2.36i)T+(−14.5−25.1i)T2 |
| 31 | 1+8.59iT−31T2 |
| 37 | 1−1.45iT−37T2 |
| 41 | 1+(−4.75−8.23i)T+(−20.5+35.5i)T2 |
| 43 | 1+(3.64−2.10i)T+(21.5−37.2i)T2 |
| 47 | 1+(−5.09+8.82i)T+(−23.5−40.7i)T2 |
| 53 | 1+(4.14+2.39i)T+(26.5+45.8i)T2 |
| 59 | 1+(−10.8+6.28i)T+(29.5−51.0i)T2 |
| 61 | 1+(3.54+2.04i)T+(30.5+52.8i)T2 |
| 67 | 1+(5.89+3.40i)T+(33.5+58.0i)T2 |
| 71 | 1+(8.80−5.08i)T+(35.5−61.4i)T2 |
| 73 | 1+(1.57−0.911i)T+(36.5−63.2i)T2 |
| 79 | 1+(−0.102−0.178i)T+(−39.5+68.4i)T2 |
| 83 | 1+8.68iT−83T2 |
| 89 | 1+(−4.02−2.32i)T+(44.5+77.0i)T2 |
| 97 | 1+(−7.58+4.37i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.151725229006495123365397254549, −8.463832038682161480271697382215, −7.69783388688278032203890577371, −7.05822036602162502000685555728, −6.32548011312406240252826621803, −4.60279868666591207217774979123, −4.35285494493473140131580780177, −3.78658521585198734642407581913, −1.74139754749872508797152729540, −0.41053439907209740566583223815,
2.28148750034893453448267701432, 2.82277621391978948552394795968, 3.61661027861633467378058952027, 4.65134100354700970542143126190, 5.82154217204122815878618621400, 6.61010992086905761391266725266, 7.56888102564950155701136544008, 8.635018686486374899669824983256, 9.073870347319548082720430535252, 10.26082837180118375566189100149