L(s) = 1 | + (0.5 + 0.866i)2-s + (0.866 − 0.5i)3-s + (−0.499 + 0.866i)4-s + (−2.02 − 3.51i)5-s + (0.866 + 0.499i)6-s − 4.70i·7-s − 0.999·8-s + (0.499 − 0.866i)9-s + (2.02 − 3.51i)10-s + (3.26 + 0.586i)11-s + 0.999i·12-s + (−2.31 + 4.00i)13-s + (4.07 − 2.35i)14-s + (−3.51 − 2.02i)15-s + (−0.5 − 0.866i)16-s + (−5.05 + 2.91i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.499 − 0.288i)3-s + (−0.249 + 0.433i)4-s + (−0.907 − 1.57i)5-s + (0.353 + 0.204i)6-s − 1.77i·7-s − 0.353·8-s + (0.166 − 0.288i)9-s + (0.641 − 1.11i)10-s + (0.984 + 0.176i)11-s + 0.288i·12-s + (−0.641 + 1.11i)13-s + (1.08 − 0.628i)14-s + (−0.907 − 0.524i)15-s + (−0.125 − 0.216i)16-s + (−1.22 + 0.707i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.662 + 0.749i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.662 + 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.202291938\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.202291938\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-3.26 - 0.586i)T \) |
| 19 | \( 1 + (2.45 + 3.60i)T \) |
good | 5 | \( 1 + (2.02 + 3.51i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 4.70iT - 7T^{2} \) |
| 13 | \( 1 + (2.31 - 4.00i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (5.05 - 2.91i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (1.59 - 2.76i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.36 + 2.36i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 8.59iT - 31T^{2} \) |
| 37 | \( 1 - 1.45iT - 37T^{2} \) |
| 41 | \( 1 + (-4.75 - 8.23i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.64 - 2.10i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.09 + 8.82i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.14 + 2.39i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-10.8 + 6.28i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.54 + 2.04i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.89 + 3.40i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (8.80 - 5.08i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1.57 - 0.911i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.102 - 0.178i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 8.68iT - 83T^{2} \) |
| 89 | \( 1 + (-4.02 - 2.32i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.58 + 4.37i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.151725229006495123365397254549, −8.463832038682161480271697382215, −7.69783388688278032203890577371, −7.05822036602162502000685555728, −6.32548011312406240252826621803, −4.60279868666591207217774979123, −4.35285494493473140131580780177, −3.78658521585198734642407581913, −1.74139754749872508797152729540, −0.41053439907209740566583223815,
2.28148750034893453448267701432, 2.82277621391978948552394795968, 3.61661027861633467378058952027, 4.65134100354700970542143126190, 5.82154217204122815878618621400, 6.61010992086905761391266725266, 7.56888102564950155701136544008, 8.635018686486374899669824983256, 9.073870347319548082720430535252, 10.26082837180118375566189100149