L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.866 + 0.5i)3-s + (−0.499 + 0.866i)4-s + (1.37 + 2.38i)5-s + (−0.866 − 0.499i)6-s − 4.25i·7-s − 0.999·8-s + (0.499 − 0.866i)9-s + (−1.37 + 2.38i)10-s + (1.41 − 2.99i)11-s − 0.999i·12-s + (−3.47 + 6.01i)13-s + (3.68 − 2.12i)14-s + (−2.38 − 1.37i)15-s + (−0.5 − 0.866i)16-s + (−4.76 + 2.75i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.499 + 0.288i)3-s + (−0.249 + 0.433i)4-s + (0.616 + 1.06i)5-s + (−0.353 − 0.204i)6-s − 1.60i·7-s − 0.353·8-s + (0.166 − 0.288i)9-s + (−0.436 + 0.755i)10-s + (0.428 − 0.903i)11-s − 0.288i·12-s + (−0.963 + 1.66i)13-s + (0.984 − 0.568i)14-s + (−0.616 − 0.356i)15-s + (−0.125 − 0.216i)16-s + (−1.15 + 0.667i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 + 0.144i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.989 + 0.144i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9129601683\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9129601683\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (-1.41 + 2.99i)T \) |
| 19 | \( 1 + (4.30 - 0.701i)T \) |
good | 5 | \( 1 + (-1.37 - 2.38i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 4.25iT - 7T^{2} \) |
| 13 | \( 1 + (3.47 - 6.01i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (4.76 - 2.75i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (0.882 - 1.52i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.07 - 7.05i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 9.97iT - 31T^{2} \) |
| 37 | \( 1 - 7.57iT - 37T^{2} \) |
| 41 | \( 1 + (4.84 + 8.39i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.39 - 1.38i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.20 + 3.82i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.984 - 0.568i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.65 - 1.53i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-11.1 - 6.42i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (10.9 + 6.33i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.40 + 2.54i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-11.1 + 6.44i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.97 - 5.15i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.905iT - 83T^{2} \) |
| 89 | \( 1 + (-1.05 - 0.611i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.40 - 0.812i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41717827535281218882915997708, −9.310976285287791585999536106386, −8.505663343111697291214898151851, −7.04187704850927400612589989430, −6.85767728187999062728156192960, −6.28721758043976741192572348187, −5.00291537834277050857006363413, −4.14925301142443574858900609499, −3.42996713135243143183525881842, −1.82486052103613800025461970110,
0.33679317998574431107465008220, 2.09366429212032356962769614245, 2.45174613173152441414172513208, 4.32696395589164028676325436364, 5.09416267746237920998709848900, 5.65311721548248203736127285276, 6.42023877168418437257718035828, 7.76356280462216042656148619501, 8.666285721478665415571742056069, 9.491482357568476707427523526569