L(s) = 1 | + (0.5 − 0.866i)2-s + (0.866 + 0.5i)3-s + (−0.499 − 0.866i)4-s + (−2.18 + 3.78i)5-s + (0.866 − 0.499i)6-s − 2.88i·7-s − 0.999·8-s + (0.499 + 0.866i)9-s + (2.18 + 3.78i)10-s + (−3.19 − 0.900i)11-s − 0.999i·12-s + (−1.29 − 2.24i)13-s + (−2.50 − 1.44i)14-s + (−3.78 + 2.18i)15-s + (−0.5 + 0.866i)16-s + (1.84 + 1.06i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.499 + 0.288i)3-s + (−0.249 − 0.433i)4-s + (−0.976 + 1.69i)5-s + (0.353 − 0.204i)6-s − 1.09i·7-s − 0.353·8-s + (0.166 + 0.288i)9-s + (0.690 + 1.19i)10-s + (−0.962 − 0.271i)11-s − 0.288i·12-s + (−0.360 − 0.623i)13-s + (−0.668 − 0.385i)14-s + (−0.976 + 0.563i)15-s + (−0.125 + 0.216i)16-s + (0.446 + 0.257i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.951 + 0.308i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.951 + 0.308i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4980398113\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4980398113\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (3.19 + 0.900i)T \) |
| 19 | \( 1 + (3.70 + 2.30i)T \) |
good | 5 | \( 1 + (2.18 - 3.78i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 2.88iT - 7T^{2} \) |
| 13 | \( 1 + (1.29 + 2.24i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.84 - 1.06i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.08 - 1.88i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.49 + 4.31i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 7.35iT - 31T^{2} \) |
| 37 | \( 1 - 4.74iT - 37T^{2} \) |
| 41 | \( 1 + (1.15 - 1.99i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (6.67 + 3.85i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.55 + 2.69i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.98 + 1.14i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (7.16 + 4.13i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (11.9 - 6.89i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.45 + 1.99i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.16 + 1.24i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-9.33 - 5.39i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.628 + 1.08i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 15.2iT - 83T^{2} \) |
| 89 | \( 1 + (13.5 - 7.79i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.65 + 3.84i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.824292863369524801159207973577, −8.273092653428186454729051981063, −7.70737728801213488140979807628, −7.03835163204500312507573996736, −6.00772113660564616107833125905, −4.66354120319327843055576217185, −3.80054867169156213284441106482, −3.17673399058683680884832321862, −2.36349158890872459047419404619, −0.16580089072450417861805258145,
1.72805871194295412115013906205, 3.10566753564374201734807486143, 4.27387160024016932820275145167, 5.00538697090743777708837157973, 5.63307493487385953862855546474, 6.93082270499200590087943181883, 7.80983426583572932651879124357, 8.383673198080292728090432666968, 8.915560470205306012548383323898, 9.588063753779319510162988596991