Properties

Label 2-1254-209.65-c1-0-17
Degree 22
Conductor 12541254
Sign 0.8890.456i0.889 - 0.456i
Analytic cond. 10.013210.0132
Root an. cond. 3.164373.16437
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)2-s + (0.866 + 0.5i)3-s + (−0.499 − 0.866i)4-s + (−0.681 + 1.18i)5-s + (0.866 − 0.499i)6-s − 0.440i·7-s − 0.999·8-s + (0.499 + 0.866i)9-s + (0.681 + 1.18i)10-s + (2.75 + 1.85i)11-s − 0.999i·12-s + (2.12 + 3.67i)13-s + (−0.381 − 0.220i)14-s + (−1.18 + 0.681i)15-s + (−0.5 + 0.866i)16-s + (−1.61 − 0.930i)17-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (0.499 + 0.288i)3-s + (−0.249 − 0.433i)4-s + (−0.304 + 0.528i)5-s + (0.353 − 0.204i)6-s − 0.166i·7-s − 0.353·8-s + (0.166 + 0.288i)9-s + (0.215 + 0.373i)10-s + (0.829 + 0.557i)11-s − 0.288i·12-s + (0.588 + 1.02i)13-s + (−0.101 − 0.0588i)14-s + (−0.304 + 0.176i)15-s + (−0.125 + 0.216i)16-s + (−0.390 − 0.225i)17-s + ⋯

Functional equation

Λ(s)=(1254s/2ΓC(s)L(s)=((0.8890.456i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.889 - 0.456i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1254s/2ΓC(s+1/2)L(s)=((0.8890.456i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.889 - 0.456i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 12541254    =    2311192 \cdot 3 \cdot 11 \cdot 19
Sign: 0.8890.456i0.889 - 0.456i
Analytic conductor: 10.013210.0132
Root analytic conductor: 3.164373.16437
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1254(901,)\chi_{1254} (901, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1254, ( :1/2), 0.8890.456i)(2,\ 1254,\ (\ :1/2),\ 0.889 - 0.456i)

Particular Values

L(1)L(1) \approx 2.1497403732.149740373
L(12)L(\frac12) \approx 2.1497403732.149740373
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
3 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
11 1+(2.751.85i)T 1 + (-2.75 - 1.85i)T
19 1+(4.34+0.344i)T 1 + (4.34 + 0.344i)T
good5 1+(0.6811.18i)T+(2.54.33i)T2 1 + (0.681 - 1.18i)T + (-2.5 - 4.33i)T^{2}
7 1+0.440iT7T2 1 + 0.440iT - 7T^{2}
13 1+(2.123.67i)T+(6.5+11.2i)T2 1 + (-2.12 - 3.67i)T + (-6.5 + 11.2i)T^{2}
17 1+(1.61+0.930i)T+(8.5+14.7i)T2 1 + (1.61 + 0.930i)T + (8.5 + 14.7i)T^{2}
23 1+(3.536.12i)T+(11.5+19.9i)T2 1 + (-3.53 - 6.12i)T + (-11.5 + 19.9i)T^{2}
29 1+(2.67+4.63i)T+(14.5+25.1i)T2 1 + (2.67 + 4.63i)T + (-14.5 + 25.1i)T^{2}
31 1+0.0632iT31T2 1 + 0.0632iT - 31T^{2}
37 17.40iT37T2 1 - 7.40iT - 37T^{2}
41 1+(0.0722+0.125i)T+(20.535.5i)T2 1 + (-0.0722 + 0.125i)T + (-20.5 - 35.5i)T^{2}
43 1+(7.464.31i)T+(21.5+37.2i)T2 1 + (-7.46 - 4.31i)T + (21.5 + 37.2i)T^{2}
47 1+(6.08+10.5i)T+(23.5+40.7i)T2 1 + (6.08 + 10.5i)T + (-23.5 + 40.7i)T^{2}
53 1+(2.86+1.65i)T+(26.545.8i)T2 1 + (-2.86 + 1.65i)T + (26.5 - 45.8i)T^{2}
59 1+(11.36.57i)T+(29.5+51.0i)T2 1 + (-11.3 - 6.57i)T + (29.5 + 51.0i)T^{2}
61 1+(12.1+7.04i)T+(30.552.8i)T2 1 + (-12.1 + 7.04i)T + (30.5 - 52.8i)T^{2}
67 1+(7.774.48i)T+(33.558.0i)T2 1 + (7.77 - 4.48i)T + (33.5 - 58.0i)T^{2}
71 1+(6.033.48i)T+(35.5+61.4i)T2 1 + (-6.03 - 3.48i)T + (35.5 + 61.4i)T^{2}
73 1+(0.848+0.489i)T+(36.5+63.2i)T2 1 + (0.848 + 0.489i)T + (36.5 + 63.2i)T^{2}
79 1+(0.259+0.449i)T+(39.568.4i)T2 1 + (-0.259 + 0.449i)T + (-39.5 - 68.4i)T^{2}
83 10.315iT83T2 1 - 0.315iT - 83T^{2}
89 1+(8.875.12i)T+(44.577.0i)T2 1 + (8.87 - 5.12i)T + (44.5 - 77.0i)T^{2}
97 1+(0.113+0.0657i)T+(48.5+84.0i)T2 1 + (0.113 + 0.0657i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.708682097117252926957296074556, −9.152781696629962285566129357612, −8.338392852145221087625096111718, −7.10122340471865327738987287865, −6.62181339708858381313712170411, −5.33369090467911615678039514981, −4.15660027351611044379613009533, −3.81108087406114797867289046823, −2.59590655151706720214309533632, −1.51976944621083041946145969967, 0.823608547775802055471086840518, 2.50666443373098551183830154313, 3.67217617188036042638541473922, 4.39171229354510910606476767381, 5.53882616685595990829912411457, 6.34625048492379781132873220237, 7.11008460298782158895421130783, 8.180178806307375713943482759506, 8.652474746068101749606714161172, 9.143488329865804608736310537511

Graph of the ZZ-function along the critical line