L(s) = 1 | + (1.22 − 0.707i)2-s + (2.84 − 0.954i)3-s + (0.999 − 1.73i)4-s − 2.12i·5-s + (2.80 − 3.18i)6-s + (−5.95 − 3.68i)7-s − 2.82i·8-s + (7.17 − 5.43i)9-s + (−1.50 − 2.60i)10-s + 8.95i·11-s + (1.19 − 5.88i)12-s + (10.4 + 18.0i)13-s + (−9.89 − 0.305i)14-s + (−2.03 − 6.05i)15-s + (−2.00 − 3.46i)16-s + (−9.01 + 5.20i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.948 − 0.318i)3-s + (0.249 − 0.433i)4-s − 0.425i·5-s + (0.468 − 0.530i)6-s + (−0.850 − 0.526i)7-s − 0.353i·8-s + (0.797 − 0.603i)9-s + (−0.150 − 0.260i)10-s + 0.814i·11-s + (0.0992 − 0.490i)12-s + (0.801 + 1.38i)13-s + (−0.706 − 0.0218i)14-s + (−0.135 − 0.403i)15-s + (−0.125 − 0.216i)16-s + (−0.530 + 0.306i)17-s + ⋯ |
Λ(s)=(=(126s/2ΓC(s)L(s)(0.484+0.874i)Λ(3−s)
Λ(s)=(=(126s/2ΓC(s+1)L(s)(0.484+0.874i)Λ(1−s)
Degree: |
2 |
Conductor: |
126
= 2⋅32⋅7
|
Sign: |
0.484+0.874i
|
Analytic conductor: |
3.43325 |
Root analytic conductor: |
1.85290 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ126(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 126, ( :1), 0.484+0.874i)
|
Particular Values
L(23) |
≈ |
2.06709−1.21824i |
L(21) |
≈ |
2.06709−1.21824i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.22+0.707i)T |
| 3 | 1+(−2.84+0.954i)T |
| 7 | 1+(5.95+3.68i)T |
good | 5 | 1+2.12iT−25T2 |
| 11 | 1−8.95iT−121T2 |
| 13 | 1+(−10.4−18.0i)T+(−84.5+146.i)T2 |
| 17 | 1+(9.01−5.20i)T+(144.5−250.i)T2 |
| 19 | 1+(−6.15+10.6i)T+(−180.5−312.i)T2 |
| 23 | 1−19.1iT−529T2 |
| 29 | 1+(28.3+16.3i)T+(420.5+728.i)T2 |
| 31 | 1+(18.9−32.8i)T+(−480.5−832.i)T2 |
| 37 | 1+(−16.9+29.3i)T+(−684.5−1.18e3i)T2 |
| 41 | 1+(28.7−16.6i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(−10.3+17.9i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(57.3−33.1i)T+(1.10e3−1.91e3i)T2 |
| 53 | 1+(2.72−1.57i)T+(1.40e3−2.43e3i)T2 |
| 59 | 1+(72.9+42.1i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(−46.0−79.6i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(−33.3+57.8i)T+(−2.24e3−3.88e3i)T2 |
| 71 | 1+115.iT−5.04e3T2 |
| 73 | 1+(19.6+33.9i)T+(−2.66e3+4.61e3i)T2 |
| 79 | 1+(26.2+45.3i)T+(−3.12e3+5.40e3i)T2 |
| 83 | 1+(−9.25−5.34i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1+(−61.9−35.7i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(−64.5+111.i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.14479996797346347097866883480, −12.28887116359693337829698354052, −11.00819974111341629291378045633, −9.615918676051241730278800243691, −8.989539867153572362143316874757, −7.33707138242060303920635269882, −6.45780582636273019756826088371, −4.51048394633166130167201529779, −3.44707027080103370919121036717, −1.72113777352975284866981362376,
2.81949366285120572609657062872, 3.64423287998879716248703739361, 5.45368593635453056520136525605, 6.63617926945986927405267477547, 7.999596817957746973698600466556, 8.895256232533217564123357309001, 10.16346097888099306125947252475, 11.21986331778890679239891134698, 12.83507771450016681623076840479, 13.26099099365160308180943089906