L(s) = 1 | + (−1.22 + 0.707i)2-s + (−2.66 − 1.37i)3-s + (0.999 − 1.73i)4-s − 2.72i·5-s + (4.23 − 0.207i)6-s + (−4.37 + 5.46i)7-s + 2.82i·8-s + (5.24 + 7.31i)9-s + (1.92 + 3.34i)10-s − 2.91i·11-s + (−5.04 + 3.25i)12-s + (10.4 + 18.1i)13-s + (1.49 − 9.78i)14-s + (−3.73 + 7.27i)15-s + (−2.00 − 3.46i)16-s + (−24.7 + 14.2i)17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.889 − 0.457i)3-s + (0.249 − 0.433i)4-s − 0.545i·5-s + (0.706 − 0.0346i)6-s + (−0.625 + 0.780i)7-s + 0.353i·8-s + (0.582 + 0.813i)9-s + (0.192 + 0.334i)10-s − 0.264i·11-s + (−0.420 + 0.270i)12-s + (0.805 + 1.39i)13-s + (0.106 − 0.698i)14-s + (−0.249 + 0.485i)15-s + (−0.125 − 0.216i)16-s + (−1.45 + 0.841i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.350 - 0.936i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.350 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.255685 + 0.368864i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.255685 + 0.368864i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.22 - 0.707i)T \) |
| 3 | \( 1 + (2.66 + 1.37i)T \) |
| 7 | \( 1 + (4.37 - 5.46i)T \) |
good | 5 | \( 1 + 2.72iT - 25T^{2} \) |
| 11 | \( 1 + 2.91iT - 121T^{2} \) |
| 13 | \( 1 + (-10.4 - 18.1i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + (24.7 - 14.2i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (17.7 - 30.7i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + 15.7iT - 529T^{2} \) |
| 29 | \( 1 + (-18.1 - 10.4i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-6.23 + 10.7i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (5.80 - 10.0i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + (-26.4 + 15.2i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (12.6 - 21.9i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (73.2 - 42.3i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (15.1 - 8.77i)T + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (37.3 + 21.5i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (15.1 + 26.2i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (43.2 - 74.8i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 1.24iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (6.48 + 11.2i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (51.7 + 89.6i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-35.2 - 20.3i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (15.5 + 8.95i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + (2.62 - 4.54i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.16095759505996875924223154953, −12.41327234136455438376213761769, −11.36021554330148016337625082590, −10.39773729353170624217941633582, −9.015334669632577462091068983262, −8.284243616743553992314375296061, −6.47907150439339588496337902904, −6.18332500186691394500011137479, −4.50368887409262620278906510233, −1.76180490719361802161953471175,
0.41781446947808200925621359262, 3.11357484311845391878798702782, 4.62758213349960304573528136992, 6.40414092329974976015936988398, 7.14930280461051522701248491702, 8.831854643488442595383620072135, 9.974157058281824167638447140290, 10.80036882524349645733547713326, 11.29369109880600017997612665532, 12.77097819408558649737459594927