Properties

Label 2-1260-35.4-c1-0-9
Degree 22
Conductor 12601260
Sign 0.9860.161i0.986 - 0.161i
Analytic cond. 10.061110.0611
Root an. cond. 3.171933.17193
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.70 + 1.44i)5-s + (0.308 − 2.62i)7-s + (−0.919 + 1.59i)11-s − 0.356i·13-s + (3.16 + 1.82i)17-s + (0.936 + 1.62i)19-s + (5.76 − 3.33i)23-s + (0.802 + 4.93i)25-s + 2.37·29-s + (3.37 − 5.84i)31-s + (4.33 − 4.02i)35-s + (−3.66 + 2.11i)37-s − 1.83·41-s + 2.80i·43-s + (7.63 − 4.40i)47-s + ⋯
L(s)  = 1  + (0.761 + 0.647i)5-s + (0.116 − 0.993i)7-s + (−0.277 + 0.480i)11-s − 0.0988i·13-s + (0.768 + 0.443i)17-s + (0.214 + 0.372i)19-s + (1.20 − 0.694i)23-s + (0.160 + 0.987i)25-s + 0.440·29-s + (0.605 − 1.04i)31-s + (0.732 − 0.680i)35-s + (−0.602 + 0.347i)37-s − 0.287·41-s + 0.427i·43-s + (1.11 − 0.643i)47-s + ⋯

Functional equation

Λ(s)=(1260s/2ΓC(s)L(s)=((0.9860.161i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.986 - 0.161i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1260s/2ΓC(s+1/2)L(s)=((0.9860.161i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.986 - 0.161i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 12601260    =    2232572^{2} \cdot 3^{2} \cdot 5 \cdot 7
Sign: 0.9860.161i0.986 - 0.161i
Analytic conductor: 10.061110.0611
Root analytic conductor: 3.171933.17193
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1260(109,)\chi_{1260} (109, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1260, ( :1/2), 0.9860.161i)(2,\ 1260,\ (\ :1/2),\ 0.986 - 0.161i)

Particular Values

L(1)L(1) \approx 1.9908940071.990894007
L(12)L(\frac12) \approx 1.9908940071.990894007
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+(1.701.44i)T 1 + (-1.70 - 1.44i)T
7 1+(0.308+2.62i)T 1 + (-0.308 + 2.62i)T
good11 1+(0.9191.59i)T+(5.59.52i)T2 1 + (0.919 - 1.59i)T + (-5.5 - 9.52i)T^{2}
13 1+0.356iT13T2 1 + 0.356iT - 13T^{2}
17 1+(3.161.82i)T+(8.5+14.7i)T2 1 + (-3.16 - 1.82i)T + (8.5 + 14.7i)T^{2}
19 1+(0.9361.62i)T+(9.5+16.4i)T2 1 + (-0.936 - 1.62i)T + (-9.5 + 16.4i)T^{2}
23 1+(5.76+3.33i)T+(11.519.9i)T2 1 + (-5.76 + 3.33i)T + (11.5 - 19.9i)T^{2}
29 12.37T+29T2 1 - 2.37T + 29T^{2}
31 1+(3.37+5.84i)T+(15.526.8i)T2 1 + (-3.37 + 5.84i)T + (-15.5 - 26.8i)T^{2}
37 1+(3.662.11i)T+(18.532.0i)T2 1 + (3.66 - 2.11i)T + (18.5 - 32.0i)T^{2}
41 1+1.83T+41T2 1 + 1.83T + 41T^{2}
43 12.80iT43T2 1 - 2.80iT - 43T^{2}
47 1+(7.63+4.40i)T+(23.540.7i)T2 1 + (-7.63 + 4.40i)T + (23.5 - 40.7i)T^{2}
53 1+(8.935.15i)T+(26.5+45.8i)T2 1 + (-8.93 - 5.15i)T + (26.5 + 45.8i)T^{2}
59 1+(4.868.42i)T+(29.551.0i)T2 1 + (4.86 - 8.42i)T + (-29.5 - 51.0i)T^{2}
61 1+(0.436+0.756i)T+(30.5+52.8i)T2 1 + (0.436 + 0.756i)T + (-30.5 + 52.8i)T^{2}
67 1+(10.0+5.78i)T+(33.5+58.0i)T2 1 + (10.0 + 5.78i)T + (33.5 + 58.0i)T^{2}
71 110.7T+71T2 1 - 10.7T + 71T^{2}
73 1+(7.904.56i)T+(36.5+63.2i)T2 1 + (-7.90 - 4.56i)T + (36.5 + 63.2i)T^{2}
79 1+(2.935.08i)T+(39.5+68.4i)T2 1 + (-2.93 - 5.08i)T + (-39.5 + 68.4i)T^{2}
83 1+9.66iT83T2 1 + 9.66iT - 83T^{2}
89 1+(3.295.70i)T+(44.5+77.0i)T2 1 + (-3.29 - 5.70i)T + (-44.5 + 77.0i)T^{2}
97 1+12.2iT97T2 1 + 12.2iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.986156364483917616603419354094, −8.998852656544142445245298749530, −7.918587557095874531427832155629, −7.22247169766678035289070707701, −6.48303020051944862127975439788, −5.55758101680415737283650167235, −4.58338781162958898179158047755, −3.50513474032790668592127438029, −2.47513688337892391661580984823, −1.15657338596037660112649824967, 1.09339157437093294745615502676, 2.38128724183656260605049014888, 3.32914416804545022988341044778, 4.93000195809518316158881411395, 5.32181919122675976270875904373, 6.17951772687594127204236369565, 7.18576273415741595188216720906, 8.283601302275914131696960461768, 8.915554976905082975665115347311, 9.493172377114002818146909742896

Graph of the ZZ-function along the critical line