L(s) = 1 | + (1.70 + 1.44i)5-s + (0.308 − 2.62i)7-s + (−0.919 + 1.59i)11-s − 0.356i·13-s + (3.16 + 1.82i)17-s + (0.936 + 1.62i)19-s + (5.76 − 3.33i)23-s + (0.802 + 4.93i)25-s + 2.37·29-s + (3.37 − 5.84i)31-s + (4.33 − 4.02i)35-s + (−3.66 + 2.11i)37-s − 1.83·41-s + 2.80i·43-s + (7.63 − 4.40i)47-s + ⋯ |
L(s) = 1 | + (0.761 + 0.647i)5-s + (0.116 − 0.993i)7-s + (−0.277 + 0.480i)11-s − 0.0988i·13-s + (0.768 + 0.443i)17-s + (0.214 + 0.372i)19-s + (1.20 − 0.694i)23-s + (0.160 + 0.987i)25-s + 0.440·29-s + (0.605 − 1.04i)31-s + (0.732 − 0.680i)35-s + (−0.602 + 0.347i)37-s − 0.287·41-s + 0.427i·43-s + (1.11 − 0.643i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.986 - 0.161i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.986 - 0.161i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.990894007\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.990894007\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.70 - 1.44i)T \) |
| 7 | \( 1 + (-0.308 + 2.62i)T \) |
good | 11 | \( 1 + (0.919 - 1.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 0.356iT - 13T^{2} \) |
| 17 | \( 1 + (-3.16 - 1.82i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.936 - 1.62i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.76 + 3.33i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 2.37T + 29T^{2} \) |
| 31 | \( 1 + (-3.37 + 5.84i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.66 - 2.11i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 1.83T + 41T^{2} \) |
| 43 | \( 1 - 2.80iT - 43T^{2} \) |
| 47 | \( 1 + (-7.63 + 4.40i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-8.93 - 5.15i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.86 - 8.42i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.436 + 0.756i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (10.0 + 5.78i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 10.7T + 71T^{2} \) |
| 73 | \( 1 + (-7.90 - 4.56i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.93 - 5.08i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 9.66iT - 83T^{2} \) |
| 89 | \( 1 + (-3.29 - 5.70i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 12.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.986156364483917616603419354094, −8.998852656544142445245298749530, −7.918587557095874531427832155629, −7.22247169766678035289070707701, −6.48303020051944862127975439788, −5.55758101680415737283650167235, −4.58338781162958898179158047755, −3.50513474032790668592127438029, −2.47513688337892391661580984823, −1.15657338596037660112649824967,
1.09339157437093294745615502676, 2.38128724183656260605049014888, 3.32914416804545022988341044778, 4.93000195809518316158881411395, 5.32181919122675976270875904373, 6.17951772687594127204236369565, 7.18576273415741595188216720906, 8.283601302275914131696960461768, 8.915554976905082975665115347311, 9.493172377114002818146909742896