Properties

Label 2-1260-35.4-c1-0-9
Degree $2$
Conductor $1260$
Sign $0.986 - 0.161i$
Analytic cond. $10.0611$
Root an. cond. $3.17193$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.70 + 1.44i)5-s + (0.308 − 2.62i)7-s + (−0.919 + 1.59i)11-s − 0.356i·13-s + (3.16 + 1.82i)17-s + (0.936 + 1.62i)19-s + (5.76 − 3.33i)23-s + (0.802 + 4.93i)25-s + 2.37·29-s + (3.37 − 5.84i)31-s + (4.33 − 4.02i)35-s + (−3.66 + 2.11i)37-s − 1.83·41-s + 2.80i·43-s + (7.63 − 4.40i)47-s + ⋯
L(s)  = 1  + (0.761 + 0.647i)5-s + (0.116 − 0.993i)7-s + (−0.277 + 0.480i)11-s − 0.0988i·13-s + (0.768 + 0.443i)17-s + (0.214 + 0.372i)19-s + (1.20 − 0.694i)23-s + (0.160 + 0.987i)25-s + 0.440·29-s + (0.605 − 1.04i)31-s + (0.732 − 0.680i)35-s + (−0.602 + 0.347i)37-s − 0.287·41-s + 0.427i·43-s + (1.11 − 0.643i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.986 - 0.161i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.986 - 0.161i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1260\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $0.986 - 0.161i$
Analytic conductor: \(10.0611\)
Root analytic conductor: \(3.17193\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1260} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1260,\ (\ :1/2),\ 0.986 - 0.161i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.990894007\)
\(L(\frac12)\) \(\approx\) \(1.990894007\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-1.70 - 1.44i)T \)
7 \( 1 + (-0.308 + 2.62i)T \)
good11 \( 1 + (0.919 - 1.59i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + 0.356iT - 13T^{2} \)
17 \( 1 + (-3.16 - 1.82i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.936 - 1.62i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-5.76 + 3.33i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 - 2.37T + 29T^{2} \)
31 \( 1 + (-3.37 + 5.84i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (3.66 - 2.11i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + 1.83T + 41T^{2} \)
43 \( 1 - 2.80iT - 43T^{2} \)
47 \( 1 + (-7.63 + 4.40i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (-8.93 - 5.15i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (4.86 - 8.42i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (0.436 + 0.756i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (10.0 + 5.78i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 - 10.7T + 71T^{2} \)
73 \( 1 + (-7.90 - 4.56i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (-2.93 - 5.08i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 9.66iT - 83T^{2} \)
89 \( 1 + (-3.29 - 5.70i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 12.2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.986156364483917616603419354094, −8.998852656544142445245298749530, −7.918587557095874531427832155629, −7.22247169766678035289070707701, −6.48303020051944862127975439788, −5.55758101680415737283650167235, −4.58338781162958898179158047755, −3.50513474032790668592127438029, −2.47513688337892391661580984823, −1.15657338596037660112649824967, 1.09339157437093294745615502676, 2.38128724183656260605049014888, 3.32914416804545022988341044778, 4.93000195809518316158881411395, 5.32181919122675976270875904373, 6.17951772687594127204236369565, 7.18576273415741595188216720906, 8.283601302275914131696960461768, 8.915554976905082975665115347311, 9.493172377114002818146909742896

Graph of the $Z$-function along the critical line