L(s) = 1 | + (0.866 + 1.5i)3-s + (−0.133 − 2.23i)5-s + (−0.866 − 0.5i)7-s + (−1.5 + 2.59i)9-s + (−2 + 3.46i)11-s + (−2.59 + 1.5i)13-s + (3.23 − 2.13i)15-s + i·17-s − 1.73i·21-s + (1.73 − i)23-s + (−4.96 + 0.598i)25-s − 5.19·27-s + (−4.5 + 7.79i)29-s + (1 + 1.73i)31-s − 6.92·33-s + ⋯ |
L(s) = 1 | + (0.499 + 0.866i)3-s + (−0.0599 − 0.998i)5-s + (−0.327 − 0.188i)7-s + (−0.5 + 0.866i)9-s + (−0.603 + 1.04i)11-s + (−0.720 + 0.416i)13-s + (0.834 − 0.550i)15-s + 0.242i·17-s − 0.377i·21-s + (0.361 − 0.208i)23-s + (−0.992 + 0.119i)25-s − 1.00·27-s + (−0.835 + 1.44i)29-s + (0.179 + 0.311i)31-s − 1.20·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.803 - 0.595i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.803 - 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9331285820\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9331285820\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.866 - 1.5i)T \) |
| 5 | \( 1 + (0.133 + 2.23i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
good | 11 | \( 1 + (2 - 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.59 - 1.5i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - iT - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (-1.73 + i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.5 - 7.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 2iT - 37T^{2} \) |
| 41 | \( 1 + (-4 - 6.92i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.46 + 2i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.92 + 4i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 12iT - 53T^{2} \) |
| 59 | \( 1 + (-1 - 1.73i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 + 8.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.92 - 4i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 15T + 71T^{2} \) |
| 73 | \( 1 - iT - 73T^{2} \) |
| 79 | \( 1 + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.33 + 2.5i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 + (8.66 + 5i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.796313593029873349018238118791, −9.347859833471646882739648034746, −8.515220318965264926188194603035, −7.73798440854763581377649924047, −6.86897342765211006097996292783, −5.44698358171523509653490043032, −4.82464740376244242357242108563, −4.13759729138203064746141066635, −2.97679726476481985213690496002, −1.77658687271086210975139644633,
0.34132588534484034179728540804, 2.22653841121348603991933940973, 2.92829581487723446817933879150, 3.76084035316019385047430603415, 5.43078662652655704820051166546, 6.15153611542406303321877028999, 6.98723521080913504598625588893, 7.72863839283245781324370464610, 8.309221685403433584603119277220, 9.402151994899502498072247510547